×

Analytical modeling, solution and experimental validation of high-velocity impact properties of composite hexagonal auxetic honeycomb cylindrical shells. (English) Zbl 07929178

Summary: Both theoretical and experimental studies are performed to investigate the impact properties of composite hexagonal auxetic honeycomb cylindrical shells subjected to an internal high-velocity projectile impact. Firstly, an analytical model of composite cylindrical shells with two fiber-reinforced polymer (FRP) skins and a hexagonal auxetic honeycomb core (HAHC) is built to anticipate the high-velocity impact properties, with the delamination and fracture energy absorption mechanisms of the skin and the core being considered. A strain-rate fitting function method is proposed to determine the material properties of the FRP skins and the core considering the strain-rate effect. Reddy’s higher-order shear deformation theory is utilized to define the displacement of any point of the structure. Also, an improved Gibson theory is applied to derive the equivalent elastic moduli and Poisson’s ratios of the HAHC. A detailed experimental validation is conducted on such shell specimens based on a high-velocity impact experimental system to validate the analytical model, in which comprehensive error analysis is discussed. Finally, the influence of critical geometric parameters of the projectile and the studied shell on its impact characteristics is evaluated and some crucial conclusions are provided to enhance impact resistance.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Ait Mohammed, M.; Tarfaoui, M., A progressive damage modelling of glass/epoxy cylindrical structure subjected to low-velocity impact, Eng. Fail. Anal., 134, 2022
[2] Al Antali, A.; Umer, R.; Zhou, J.; Cantwell, W. J., The energy-absorbing properties of composite tube-reinforced aluminum honeycomb, Compos. Struct., 176, 630-639, 2017
[3] Allahverdizadeh, A.; Naei, M. H.; Nikkhah Bahrami, M., Nonlinear free and forced vibration analysis of thin circular functionally graded plates, J. Sound Vib., 310, 966-984, 2008
[4] Amabili, M.; Reddy, J. N., The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells, Compos. Struct., 244, 2020
[5] Aryal, B.; Morozov, E. V.; Wang, H.; Shankar, K.; Hazell, P. J.; Escobedo-Diaz, J. P., Effects of impact energy, velocity, and impactor mass on the damage induced in composite laminates and sandwich panels, Compos. Struct., 226, Article 111284 pp., 2019
[6] Ben-Youssef, Y.; Kerboua, Y.; Lakis, A. A., Analysis of nonlinear vibrations of thin cylindrical shells subjected to supersonic flow, Thin-Walled Struct., 173, Article 108969 pp., 2022
[7] Besant, T.; Davies, G. A.O.; Hitchings, D., Finite element modelling of low velocity impact of composite sandwich panels, Composites Part A, 32, 1189-1196, 2001
[8] Bouette, B.; Cazeneuve, C.; Oytana, C., Effect of Strain Rate on Interlaminar Shear Properties of Carbon/epoxy Composites, 45, 313-321, 1992
[9] Calignano, F.; Lorusso, M.; Roppolo, I.; Minetola, P., Investigation of the mechanical properties of a carbon fibre-reinforced nylon filament for 3d printing, Machines, 8, 52, 2020
[10] Candaş, Adem; Oterkus, Erkan; İmrak, Cevat Erdem, Dynamic crack propagation and its interaction with micro-cracks in an impact problem, J. Eng. Mater. Technol., 143, 1, Article 011003 pp., 2021
[11] Choi, I. H.; Hong, C. S., Low-velocity impact response of composite laminates considering higher-order shear deformation and large deflection, Mech. Compos. Mater. Struct., 1, 157-170, 1994
[12] Davies, G. A.O.; Hitchings, D.; Ankersen, J., Predicting delamination and debonding in modern aerospace composite structures, Compos. Sci. Technol., 66, 846-854, 2006
[13] Eyvazian, A.; Sebaey, T. A.; Żur, K. K.; Khan, A.; Zhang, H.; Wong, S. H.F., On the dynamics of FG-GPLRC sandwich cylinders based on an unconstrained higher-order theory, Compos. Struct., 267, 2021
[14] Feng, D.; Aymerich, F., Damage prediction in composite sandwich panels subjected to low-velocity impact, Compos. Appl. Sci. Manuf., 52, 12-22, 2013
[15] Gilat, A.; Goldberg, R. K.; Roberts, G. D., Experimental study of strain-rate-dependent behavior of carbon/epoxy composite, Compos. Sci. Technol., 62, 1469-1476, 2002
[16] Gromysz, K., Modelling the Influence of composite stiffness on energy dissipation in reinforced composite concrete floors/modelowanie wpływu sztywnosci zespolenia na rozpraszanie energii w warstwie kontaktowej zelbetowych stropów zespolonych, Arch. Civ. Eng., 58, 71-96, 2012
[17] Gupta, A.; Pradyumna, S., Nonlinear dynamic analysis of sandwich shell panels with auxetic honeycomb core and curvilinear fibre reinforced facesheets, Eur. J. Mech. Solid., 95, 2022 · Zbl 1490.74042
[18] Ha, N. H.; Tan, N. C.; Ninh, D. G.; C Hung, N.; V Dao, D., Dynamical and chaotic analyses of single-variable-edge cylindrical panels made of sandwich auxetic honeycomb core layer in thermal environment, Thin-Walled Struct., 183, Article 110300 pp., 2023
[19] Harding, J.; Welsh, L. M., A tensile testing technique for fibre-reinforced composites at impact rates of strain, J. Mater. Sci., 18, 1810-1826, 1983
[20] Hoang, V. N.V.; Ninh, D. G.; Van Bao, H.; Le Huy, V., Behaviors of dynamics and stability standard of graphene nanoplatelet reinforced polymer corrugated plates resting on the nonlinear elastic foundations, Compos. Struct., 260, 2021, Article 113253 pp., 2021
[21] Huang, Y.; Liu, W.; Jiang, Q.; Wei, Y.; Qiu, Y., Interlaminar fracture toughness of carbon-fiber-reinforced epoxy composites toughened by poly(phenylene oxide) particles, ACS Appl. Polym. Mater., 2, 3114-3121, 2020
[22] Januš, O.; Girgle, F.; Rozsypalová, I.; Kostiha, V.; Prokeš, J.; Štěpánek, P.; Čairović, Đ., Influence of test parameters on the interlaminar shear strength of FRP bars, Compos. Struct., 299, Article 116061 pp., 2022
[23] Jing, L.; Xi, C.; Wang, Z.; Zhao, L., Energy absorption and failure mechanism of metallic cylindrical sandwich shells under impact loading, Mater. Des., 52, 470-480, 2013
[24] Jing, L.; Wang, Z.; Zhao, L., Response of metallic cylindrical sandwich shells subjected to projectile impact—experimental investigations, Compos. Struct., 107, 36-47, 2014
[25] Jočbalis, G.; Kačianauskas, R.; Borodinas, S.; Rojek, J., Comparative numerical study of rate-dependent continuum-based plasticity models for high-velocity impacts of copper particles against a substrate, Int. J. Impact Eng., 172, Article 104394 pp., 2023
[26] Jones, N., Structural Impact, 1997, Cambridge, UK: Cambridge, UK
[27] Khaire, N.; Tiwari, G.; Iqbal, M. A., Effect of eccentricity and obliquity on the ballistic performance and energy dissipation of hemispherical shell subjected to ogive nosed, Thin-Walled Struct., 161, Article 107447 pp., 2021
[28] Khaire, N.; Tiwari, G.; Rathod, S.; Iqbal, M. A.; Topa, A., Perforation and energy dissipation behaviour of honeycomb core cylindrical sandwich shell subjected to conical shape projectile at high velocity impact, Thin-Walled Struct., 171, 2022
[29] Khalili, S. M.R.; Davar, A.; Malekzadeh Fard, K., Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory, Int. J. Mech. Sci., 56, 1-25, 2012
[30] Khalili, S. M.R.; Rahmani, O.; Malekzadeh Fard, K.; Thomsen, O. T., High-order modeling of circular cylindrical composite sandwich shells with a transversely compliant core subjected to low velocity impact, Mech. Adv. Mater. Struct., 21, 680-695, 2014
[31] Lei, Z. X.; Tong, L. H., Analytical solution of low-velocity impact of graphene-reinforced composite functionally graded cylindrical shells, J. Braz. Soc. Mech. Sci. Eng., 41, 2019
[32] Leissa, A. W.; Chang, J. D., Elastic deformation of thick, laminated composite shells, Compos. Struct., 35, 153-170, 1996
[33] Li, H.; Li, Z.; Xiao, Z.; Wang, X.; Xiong, J.; Zhou, J.; Guan, Z., Development of an integrated model for prediction of impact and vibration response of hybrid fiber metal laminates with a viscoelastic layer, Int. J. Mech. Sci., 197, Article 106298 pp., 2021
[34] Li, H.; Wang, D.; Xiao, Z.; Qin, Z.; Xiong, J.; Han, Q.; Wang, X., Investigation of vibro-impact resistance of fiber reinforced composite plates with polyurea coating with elastic constraints, Aero. Sci. Technol., 121, Article 107196 pp., 2022
[35] Lin, C.; Fatt, M. S.H., Perforation of composite plates and sandwich panels under quasi-static and projectile loading, J. Compos. Mater., 40, 1801-1840, 2006
[36] Lin, J.; Naceur, H.; Coutellier, D.; Abrate, S., Numerical modeling of the low-velocity impact of composite plates using a shell-based SPH method, Meccanica, 50, 2649-2660, 2015 · Zbl 1336.74072
[37] Liu, Z.; Swaddiwudhipong, S., Response of plate and shell structures due to low velocity impact, J. Eng. Mech., 123, 1230-1237, 1997
[38] Liu, L.; Meng, P.; Wang, H.; Guan, Z., The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall, Compos. B Eng., 76, 122-132, 2015
[39] Liu, W.-l.; Chang, X.-l.; Zhang, X.-j.; Zhang, Y.-h., Experimental and numerical analysis of filament winding composite shell under low-velocity impact, J. Propuls. Technol., 38, 172-178, 2017
[40] Liu, Y.; Qin, Z.; Chu, F., Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core, Mech. Adv. Mater. Struct., 29, 1338-1347, 2020
[41] Liu, Y.; Hu, W.; Zhu, R.; Safaei, B.; Qin, Z.; Chu, F., Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact, Aero. Sci. Technol., 121, 2022
[42] Liu, Z.; Liu, J.; Liu, J.; Zeng, W.; Huang, W., The impact responses and failure mechanism of composite gradient reentrant honeycomb structure, Thin-Walled Struct., 182, Article 110228 pp., 2023
[43] Ma, W.; Yang, C.; Ma, D.; Zhong, J., Low-velocity impact response of nanotube-reinforced composite sandwich curved panels, Sādhanā, 44, 2019
[44] Ma, D.; Wang, Z.; Giglio, M.; Campos Amico, S.; Manes, A., Influence of strain-rate related parameters on the simulation of ballistic impact in woven composites, Compos. Struct., 300, Article 116142 pp., 2022
[45] Madke, Rohit Raju; Chowdhury, Rajib, Anti-impact behavior of auxetic sandwich structure with braided face sheets and 3D re-entrant cores, Compos. Struct., 236, Article 111838 pp., 2020
[46] Mazloomi, M. S.; Ranjbar, M.; Boldrin, L.; Scarpa, F.; Patsias, S.; Ozada, N., Vibroacoustics of 2D gradient auxetic hexagonal honeycomb sandwich panels, Compos. Struct., 187, 593-603, 2018
[47] Meng, Z.; Han, J.; Qin, X.; Zhang, Y.; Balogun, O.; Keten, S., Spalling-like failure by cylindrical projectiles deteriorates the ballistic performance of multi-layer graphene plates, Carbon, 126, 611-619, 2018
[48] Morinière, F. D.; Alderliesten, R. C.; Sadighi, M.; Benedictus, R., An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate, Compos. Struct., 100, 89-103, 2013
[49] Nguyen, Q. H.; Nguyen, L. B.; Nguyen, H. B.; Nguyen-Xuan, H., A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets, Compos. Struct., 245, Article 112321 pp., 2020
[50] Nguyen, N. V.; Nguyen-Xuan, H.; Nguyen, T. N.; Kang, J.; Lee, J., A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement, Compos. Struct., 259, Article 113213 pp., 2021
[51] Ninh, D. G.; Qua, N. M.; Hoang, V. N.V., Thermally vibrational analyses of functionally graded graphene nanoplatelets reinforced funnel shells with different complex shapes surrounded by elastic foundation, Mech. Adv. Mater. Struct., 29, 4654-4676, 2022
[52] Ninh, D. G.; Ha, N. H.; Long, N. T.; Tan, N. C.; Tie, N. D.; Dao, D. V., Thermal vibrations of complex-generatrix shells made of sandwich CNTRC sheets on both sides and open/closed cellular functionally graded porous core, Thin-Walled Struct., 182, Article 110161 pp., 2023
[53] Prasannavenkadesan, V.; Pandithevan, P., Johnson-Cook model combined with Cowper-Symonds model for bone cutting simulation with experimental validation, J. Mech. Med. Biol., 21, Article 2150010 pp., 2021
[54] Rawat, P.; Singh, K. K.; Singh, N. K., Numerical investigation of damage area due to different shape of impactors at low velocity impact of GFRP laminate, Mater. Today: Proc., 4, 8731-8738, 2017
[55] Recht, R. F.; Ipson, T. W., Ballistic perforation dynamics, J. Appl. Mech., 30, 384-390, 1963
[56] Ren, S.; Song, Y.; Zhang, A. M.; Wang, S.; Li, P., Experimental study on dynamic buckling of submerged grid-stiffened cylindrical shells under intermediate-velocity impact, Appl. Ocean Res., 74, 237-245, 2018
[57] Richeton, J.; Ahzi, S.; Daridon, L., Modeling of strain rates and temperature effects on the yield behavior of amorphous polymers, J. Phys., IV, 110, 39-44, 2003
[58] Salas, P. A.; Benson, D. J.; Venkataraman, S.; Loikkanen, M. J., Numerical implementation of polymer viscoplastic equations for high strain-rate composite models, J. Aero. Eng., 22, 304-309, 2009
[59] Schroeder, A. B.; Dobson, E. T.A.; Rueden, C. T.; Tomancak, P.; Jug, F.; Eliceiri, K. W., The ImageJ ecosystem: open-source software for image visualization, processing, and analysis, Protein Sci., 30, 234-249, 2021
[60] Shen, X.; Zhang, D.; Yao, C.; Tan, L.; Li, X., Research on parameter identification of Johnson-Cook constitutive model for TC17 titanium alloy cutting simulation, Mater. Today Commun., 31, 2022
[61] Su, B.; Zhou, Z.; Zhang, J.; Wang, Z.; Shu, X.; Li, Z., A numerical study on the impact behavior of foam-cored cylindrical sandwich shells subjected to normal/oblique impact, Lat. Am. J. Solid. Struct., 12, 2045-2060, 2015
[62] Sundararajan, G., The Nature of Plastic Deformation during Single Impact and its Relevance to Solid Particle Erosion, 1981
[63] Tien, N. D.; Hoang, V. N.V.; Nin, D. G.; Huy, V. L.; Hung, N. C., Nonlinear dynamics and chaos of a nanocomposite plate subjected to electro-thermo-mechanical loads using Flügge-Lur’e-Bryrne theory, J. Vib. Control, 27, 1184-1197, 2021
[64] Tiwari, G.; Khaire, N., Ballistic performance and energy dissipation characteristics of cylindrical honeycomb sandwich structure, Int. J. Impact Eng., 160, 2022
[65] Vasiliev, V. V.; Barynin, V. A.; Razin, A. F., Anisogrid composite lattice structures – development and aerospace applications, Compos. Struct., 94, 1117-1127, 2012
[66] Wu, Q. G.; Wen, H. M.; Qin, Y.; Xin, S. H., Perforation of FRP laminates under impact by flat-nosed projectiles, Compos. B Eng., 43, 221-227, 2012
[67] Yadav, A.; Amabili, M.; Panda, S. K.; Dey, T., Nonlinear analysis of cylindrical sandwich shells with porous core and CNT reinforced face-sheets by higher-order thickness and shear deformation theory, Eur. J. Mech. Solid., 90, 2021 · Zbl 1486.74098
[68] Yang, J.-S.; Zhang, W.-M.; Yang, F.; Chen, S.-Y.; Schmidt, R.; Schröder, K.-U.; Ma, L.; Wu, L.-Z., Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells, Compos. Struct., 238, 2020
[69] Zelin, L.; Hui, L.; Dongsheng, W.; Chaohui, R.; Xudong, Z.; Ji, Z.; Xiangping, W., A dynamic response prediction model of fiber-metal hybrid laminated plates embedded with viscoelastic damping core under low-velocity impact excitation, Chin. J. Theor. Appl. Mech., 52, 1690-1699, 2020
[70] Zhang, X.; Huang, Y.; Chen, X., Contact analysis of flexible beam during space docking process, Adv. Eng. Software, 64, 38-46, 2013
[71] Zhang, J. X.; Zhu, Y. Q.; Li, K. K.; Yuan, H.; Du, J. L.; Qin, Q. H., Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: experimental and numerical investigations, Int. J. Impact Eng., 164, Article 104201 pp., 2022
[72] Zhou, J. X.; Deng, Z. C.; Hou, X. H., Critical velocity of sandwich cylindrical shell under moving internal pressure, Appl. Math. Mech., 29, 1569-1578, 2008 · Zbl 1165.74329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.