×

Closed crack imaging using time reversal method based on fundamental and second harmonic scattering. (English) Zbl 1467.74048

Summary: A recent variant of time reversal imaging is employed for reconstructing images of a closed crack, based on both the fundamental and the second harmonic components of the longitudinal scattered field due to an incident longitudinal wave. The scattered field data are generated by a finite element model that includes unilateral contact with Coulomb friction between the crack faces to account for the Contact Acoustic Nonlinearity. The closure state of the crack is controlled by specifying a pre-stress between the crack faces. The knowledge of the scattered field at the fundamental (incident) frequency and the second harmonic frequency for multiple incident angles provides the required inputs for the imaging algorithm. It is shown that the image reconstructed from the fundamental harmonic closely matches the image that is obtained from scattering data in the absence of contact, although contact between the crack faces reduces the amplitude of the scattered field in the former case. The fundamental harmonic image is shown to provide very accurate estimates of crack length for low to moderate levels of pre-stress. The second harmonic image is also shown to provide acceptable estimates of crack length and the image is shown to correlate with the source location of second harmonic along the crack, which becomes increasingly localized near the crack tips for decreasing levels of pre-stress. The influence of the number of sensors on the image quality is also discussed in order to identify the minimum sensors number requirement. Finally, multiple frequency imaging is performed over a fixed bandwidth to assess the potential improvement of the imaging algorithm when considering broadband information.

MSC:

74J20 Wave scattering in solid mechanics
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

References:

[1] Solodov, I. Y., Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications, Ultrasonics, 36, 383-390 (1998)
[2] Van Den Abeele, K.; Johnson, P. A.; Sutin, A., Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS), J. Nondestruct. Eval., 12, 17-30 (2000)
[3] Donskoy, D.; Sutin, A.; Ekimov, A., Nonlinear acoustic interaction on contact surfaces and its use for nondestructive testing, NDT & E Int., 34, 231-238 (2001)
[4] Solodov, I. Y.; Krohn, N.; Busse, G., CAN: an example of nonclassical acoustic nonlinearity in solids, Ultrasonics, 40, 621-625 (2002)
[5] Solodov, I. Y.; Wackerl, J.; Pfleiderer, K.; Busse, G., Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location, Appl. Phys. Lett., 84, 26, 5386-5388 (2004)
[6] Nagy, P. B., Fatigue damage assessment by nonlinear ultrasonic materials characterization, Ultrasonics, 36, 375-381 (1998)
[7] Zheng, Y.; Maev, R. G.; Solodov, I. Y., Nonlinear acoustic applications for material characterization: A review, Can. J. Phys., 77, 927-967 (1999)
[8] Pruell, C.; Kim, J.-Y.; Qu, J.; Jacobs, L. J., Evaluation of fatigue damage using nonlinear guided waves, Smart Mater. Struct., 18, 3, 35003 (2009)
[9] Jhang, K.-Y., Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review, Int. J. Precis. Eng. Manuf., 10, 1, 123-135 (2009)
[10] Rose, L. R.F.; Chan, E.; Wang, C. H., A comparison and extensions of algorithms for quantitative imaging of laminar damage in plates. I. Point spread functions and near field imaging, Wave Motion, 58, 222-243 (2015) · Zbl 1467.94006
[11] Chan, E.; Rose, L. R.F.; Wang, C. H., A comparison and extensions of algorithms for quantitative imaging of laminar damage in plates. II. Non-monopole scattering and noise tolerance, Wave Motion, 66, 220-237 (2016) · Zbl 1467.94003
[12] Blanloeuil, P.; Meziane, A.; Bacon, C., Nonlinear interaction of ultrasonic waves with a crack of different orientations, AIP Conf. Proc., 1511, 1, 99-106 (2013)
[14] Blanloeuil, P.; Meziane, A.; Bacon, C., Numerical study of nonlinear interaction between a crack and elastic waves under an oblique incidence, Wave Motion, 51, 3, 425-437 (2014) · Zbl 1456.74095
[15] Kak, A. C.; Slaney, M., Principles of Computerized Tomographic Imaging (1988), IEEE Press: IEEE Press New York · Zbl 0721.92011
[16] Devaney, A. J.; Dennison, M., Inverse scattering in inhomogeneous background media, Inverse Problems, 19, 4, 855 (2003) · Zbl 1041.35052
[17] Chan, E.; Rose, L. R.F.; Wang, C. H., An extended diffraction tomography method for quantifying structural damage using numerical Green’s functions, Ultrasonics, 59, 1-13 (2015)
[18] Devaney, A. J., Mathematical Foundations of Imaging, Tomography and Wavefield Inversion (2012), Cambridge University Press · Zbl 1259.65140
[19] Wang, C. H.; Rose, J. T.; Chang, F.-K., A synthetic time-reversal imaging method for structural health monitoring, Smart Mater. Struct., 13, 2, 415 (2004)
[20] Michaels, J. E., Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors, Smart Mater. Struct., 17, 35035 (2008)
[21] Simonetti, F.; Huang, L., From beamforming to diffraction tomography, J. Appl. Phys., 103, 10, Article 103110 pp. (2008)
[22] Norton, S. J.; Linzer, M., Ultrasonic reflectivity tomography: reconstruction with circular transducer arrays, Ultrason. Imaging, 1, 123-133 (1979)
[23] Busse, L. J., Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, 2, 174-179 (1992)
[24] Sicard, R.; Goyette, J.; Zellouf, D., A SAFT algorithm for lamb wave imaging of isotropic plate-like structures, Ultrasonics, 39, 7, 487-494 (2002)
[25] Holmes, C.; Drinkwater, B. W.; Wilcox, P. D., Post-processing of the full matrix of ultrasonic transmitreceive array data for non-destructive evaluation, NDT & E Int., 38, 8, 701-711 (2005)
[26] Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.; Hunter, A. J., Defect detection using ultrasonic arrays: The multi-mode total focusing method, NDT and E Int., 43, 2, 123-133 (2010)
[27] Velichko, A.; Wilcox, P. D., An analytical comparison of ultrasonic array imaging algorithms, J. Acoust. Soc. Am., 127, 2377-2384 (2010), March 2009
[28] Chang, W.-F., Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition, Geophysics, 51, 1, 67 (1986)
[29] Lin, X.; Yuan, F. G., Experimental study applying a migration technique in structural health monitoring, Struct. Health Monit., 4, 4, 341-353 (2005)
[30] Anderson, B. E.; Griffa, M.; Bas, P.-y. L.; Ulrich, T. J.; Johnson, P. A., Experimental implementation of reverse time migration for nondestructive evaluation applications, J. Acoust. Soc. Am., 129, 1 (2011), pp. EL8-14
[31] Kerbrat, E.; Prada, C.; Cassereau, D.; Fink, M., Imaging in the presence of grain noise using the decomposition of the time reversal operator, J. Acoust. Soc. Am., 113, 3, 1230-1240 (2003)
[32] Devaney, A. J., Time reversal imaging of obscured targets from multistatic data, IEEE Trans. Antennas Propag., 53, 5, 1600-1610 (2005)
[33] Bavu, E.; Berry, A., High-resolution imaging of sound sources in free field using a numerical time-reversal sink, Acta Acust. United Ac., 95, 4, 595-606 (2009)
[34] Wang, C. H.; Francis Rose, L. R.F., Imaging damage using mixed passive and active sensors, (Key Engineering Materials, Vol. 558 (2013), Trans Tech Publ), 244-251
[35] Chan, E.; Rose, L. R.F.; Wang, C. H., Multi-Frequency Approach to Imaging Damage in Stiffened Structures Exhibiting Multi-path Reflections (2015), Structural Health Monitoring
[36] Goursolle, T.; Calle, S.; Santos, S. D.; Matar, O. B., A two-dimensional pseudospectral model for time reversal and nonlinear elastic wave spectroscopy, J. Acoust. Soc. Am., 122, 6, 3220-3229 (2007)
[37] Ulrich, T. J.; Johnson, P. A.; Sutin, A., Imaging nonlinear scatterers applying the time reversal mirror, J. Acoust. Soc. Am., 119, 3, 1514-1518 (2006)
[38] Goursolle, T.; Santos, S. D.; Matar, O. B.; Callé, S., Non-linear based time reversal acoustic applied to crack detection: Simulations and experiments, Int. J. Non-Linear Mech., 43, 3, 170-177 (2008)
[39] Ulrich, T. J.; Johnson, P. A.; Guyer, R. A., Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror, Phys. Rev. Lett., 98, 10, Article 104301 pp. (2007)
[40] Ulrich, T. J.; Anderson, B. E.; Remillieux, M. C.; Le Bas, P. Y.; Pieczonka, L., Application of nonlinear ultrasonics to inspection of stainless steel for dry storage, Tech. rep. LA-UR-15-27382 (2015), Los Alamos National Laboratory (LANL)
[41] Le Bas, P. Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J., Damage imaging in a laminated composite plate using an air-coupled time reversal mirror, Appl. Phys. Lett., 107, 18 (2015)
[43] Lim, H. J.; Song, B.; Park, B.; Sohn, H., Noncontact fatigue crack visualization using nonlinear ultrasonic modulation, NDT & E Int., 73, 8-14 (2015)
[44] Liu, P.; Sohn, H.; Yang, S.; Kundu, T., Fatigue crack localization using noncontact laser ultrasonics and state space attractors, J. Acoust. Soc. Am., 138, 2, 890-898 (2015)
[45] Kawashima, K.; Murase, M.; Yamada, R.; Matsushima, M.; Uematsu, M.; Fujita, F., Nonlinear ultrasonic imaging of imperfectly bonded interfaces, Ultrasonics, 44, 1329-1333 (2006), SUPPL
[46] Lee, T. H.; Jhang, K. Y., Experimental investigation of nonlinear acoustic effect at crack, NDT & E Int., 42, 757-764 (2009)
[47] Rivière, J.; Remillieux, M. C.; Ohara, Y.; Anderson, B. E.; Haupert, S.; Ulrich, T. J.; Johnson, P. A., Dynamic acousto-elasticity in a fatigue-cracked sample, J. Nondestruct. Eval., 33, 2, 216-225 (2014)
[49] Cai, A.; Sun, J.-a.; Wade, G., Imaging the acoustic nonlinear parameter with diffraction tomography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, 6, 708-715 (1992)
[50] Zhang, D.; Gong, X.-f.; Chen, X., Experimental imaging of the acoustic nonlinearity parameter B/A for biological tissues via a parametric array, Ultrasound Med. Biol., 27, 10, 1359-1365 (2001)
[51] Mulvagh, S. L.; Foley, D. A.; Aeschbacher, B. C.; Klarich, K. K.; Seward, J. B., Second harmonic imaging of an intravenously administered echocardiographic contrast agentVisualization of coronary arteries and measurement of coronary blood flow, J. Am. Coll. Cardiol., 27, 6, 1519-1525 (1996)
[52] Verbeek, X. A.A. M.; Ledoux, L. A.F.; Willigers, J. M.; Brands, P. J.; Hoeks, A. P.G., Experimental investigation of the pulse inversion technique for imaging ultrasound contrast agents, J. Acoust. Soc. Am., 107, 4, 2281-2290 (2000)
[53] Kazakov, V. V.; Sutin, A.; Johnson, P. A., Sensitive imaging of an elastic nonlinear wave-scattering source in a solid, Appl. Phys. Lett., 81, 4, 646-648 (2002)
[54] Jiao, J. P.; Drinkwater, B. W.; Neild, S.a.; Wilcox, P. D., Low-frequency vibration modulation of guided waves to image nonlinear scatterers for structural health monitoring, Smart Mater. Struct., 18, 6, Article 065006 pp. (2009)
[55] Scalerandi, M.; Gliozzi, a. S.; Bruno, C. L.E.; Van Den Abeele, K., Nonlinear acoustic time reversal imaging using the scaling subtraction method, J. Phys. D: Appl. Phys., 41, 21, Article 215404 pp. (2008)
[56] Potter, J. N.; Croxford, A. J.; Wilcox, P. D., Nonlinear ultrasonic phased array imaging, Phys. Rev. Lett., 113, 14, 1-5 (2014)
[57] Ohara, Y.; Yamamoto, S.; Mihara, T.; Yamanaka, K., Ultrasonic evaluation of closed cracks using subharmonic phased array, Japan. J. Appl. Phys., 47, 5 PART 2, 3908-3915 (2008)
[58] Ohara, Y.; Mihara, T.; Sasaki, R.; Ogata, T.; Yamamoto, S.; Kishimoto, Y.; Yamanaka, K., Imaging of closed cracks using nonlinear response of elastic waves at subharmonic frequency, Appl. Phys. Lett., 90, 1, 11902-119023 (2007)
[59] Ohara, Y.; Horinouchi, S.; Hashimoto, M.; Shintaku, Y.; Yamanaka, K., Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads, Ultrasonics, 51, 6, 661-666 (2011)
[60] Park, C.-S.; Kim, J.-W.; Cho, S.; Seo, D.-c., A high resolution approach for nonlinear sub-harmonic imaging, NDT & E Int., 79, 114-122 (2016)
[61] Zumpano, G.; Meo, M., A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures-A simulation study, Internat. J. Solids Structures, 44, 11-12, 3666-3684 (2007) · Zbl 1178.74093
[62] Barbieri, E.; Meo, M., Time reversal DORT method applied to nonlinear elastic wave scattering, Wave Motion, 47, 7, 452-467 (2010) · Zbl 1231.74220
[63] Ciampa, F.; Meo, M., Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis, J. Acoust. Soc. Am., 131, 6, 4316 (2012)
[64] Ciampa, F.; Scarselli, G.; Pickering, S.; Meo, M., Nonlinear elastic wave tomography for the imaging of corrosion damage, Ultrasonics, 62, 147-155 (2015)
[65] Li, W.; Cho, Y., Combination of nonlinear ultrasonics and guided wave tomography for imaging the micro-defects, Ultrasonics, 65, 87-95 (2016)
[67] Hirose, S.; Achenbach, J. D., Higher harmonics in the far field due to dynamic crack-face contacting, J. Acoust. Soc. Am., 93, 1, 142-147 (1993)
[68] Hirose, S., 2-D scattering by a crack with contact-boundary conditions, Wave Motion, 19, 37-49 (1993) · Zbl 0926.74054
[69] Sarens, B.; Verstraeten, B.; Glorieux, C.; Kalogiannakis, G.; Van Hemelrijck, D., Investigation of contact acoustic nonlinearity in delaminations by shearographic imaging, laser doppler vibrometric scanning and finite difference modeling, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 6, 1383-1395 (2010)
[70] Kimoto, K.; Ichikawa, Y., A finite difference method for elastic wave scattering by a planar crack with contacting faces, Wave Motion, 52, 120-137 (2015) · Zbl 1454.74143
[71] Delrue, S.; Van Den Abeele, K., Three-dimensional finite element simulation of closed delaminations in composite materials, Ultrasonics, 52, 2, 315-324 (2012)
[72] Baillet, L.; Sassi, T., Mixed finite element methods for the {S}ignorini problem with friction, Numer. Methods Partial Differential Equations, 22, 6, 1489-1508 (2006) · Zbl 1105.74041
[73] Baillet, L.; Sassi, T., Mixed finite element formulation in large deformation frictional contact problem, Rev. Eur. Élém. Finis., 14, 2-3, 287-304 (2005) · Zbl 1226.74027
[74] Belanger, P.; Cawley, P.; Simonetti, F., Guided wave diffraction tomography within the born approximation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 6, 1405-1418 (2010)
[75] Huthwaite, P.; Simonetti, F., High-resolution guided wave tomography, Wave Motion, 50, 5, 979-993 (2013) · Zbl 1454.74087
[76] Huthwaite, P., Evaluation of inversion approaches for guided wave thickness mapping, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470, 2166, 20140063 (2014)
[77] Zhao, X.; Gao, H.; Zhang, G.; Ayhan, B.; Yan, F.; Kwan, C.; Rose, J. L., Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring, Smart Mater. Struct., 16, 4, 1208 (2007)
[78] Van Velsor, J. K.; Gao, H.; Rose, J. L., Guided-wave tomographic imaging of defects in pipe using a probabilistic reconstruction algorithm, Insight, Non-Destr. Test. Cond. Monit., 49, 9, 532-537 (2007)
[79] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions, Vol. 1046 (1965), Dover: Dover New York, Others
[80] Carpenter, N. J.; Taylor, R. L.; Katona, M. G., Lagrange constraints for transient finite element surface contact, Internat. J. Numer. Methods Engrg., 32, 1, 103-128 (1991) · Zbl 0763.73053
[81] Thompson, L. L., A review of finite-element methods for time-harmonic acoustics, J. Acoust. Soc. Am., 119, 3, 1315-1330 (2006)
[82] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), Elsevier · Zbl 0383.65058
[83] Sohn, H.; Lee, S. J., Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers, Smart Mater. Struct., 19, 1, 15007 (2010)
[84] Biwa, S.; Hiraiwa, S.; Matsumoto, E., Pressure-dependent stiffnesses and nonlinear ultrasonic response of contacting surfaces, J. Solid Mech. Mater. Eng., 3, 1, 10-21 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.