×

Removing local irregularities of triangular meshes with highlight line models. (English) Zbl 1191.68771

Summary: The highlight line model is a powerful tool in assessing the quality of a surface. It increases the flexibility of an interactive design environment. In this paper, a method to generate a highlight line model on an arbitrary triangular mesh is presented. Based on the highlight line model, a technique to remove local shape irregularities of a triangular mesh is then presented. The shape modification is done by solving a minimization problem and performing an iterative procedure. The new technique improves not only the shape quality of the mesh surface, but also the shape of the highlight line model. It provides an intuitive and yet suitable method for locally optimizing the shape of a triangular mesh.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68T10 Pattern recognition, speech recognition
Full Text: DOI

References:

[1] Burdea G, Coiffet P. Virtual Reality Technology. 2nd ed. Hoboken: Wiley Interscience, 2003. 157–209
[2] Taubin G. A signal processing approach to fair surface design. In: Proceedings of Siggraph 95. New York: Association for Computing Machinery, 1995. 351–358
[3] Liu X, Bao H, Heng P A, et al. Constrained fairing for meshes. Comput Graph Forum, 2001, 20(2): 115–123 · Zbl 0984.68563 · doi:10.1111/1467-8659.00483
[4] Vollmer J, Mencl R, Müller H. Improved Laplacian smoothing of noisy surface meshes. Comput Graph Forum, 1999, 18(3): 131–138 · doi:10.1111/1467-8659.00334
[5] Alexa M. Wiener filtering of meshes. In: Wyvill G, ed. Proceedings of Shape Modeling International 2002. Los Alamitos: IEEE Computer Society, 2002. 51–60
[6] Peng J, Strela V, Zorin D. A simple algorithm for surface denoising. In: Proceedings of IEEE Visualization 2001. Los Alamitos: IEEE Computer Society, 2001. 107–112
[7] Fleishman S, Drori I, Cohen-or D. Bilateral mesh denoising. ACM Trans Graph, 2003, 22(3): 950–953 · doi:10.1145/882262.882368
[8] Jones T R, Durand F, Desbrun M. Non-iterative, feature-preserving mesh smoothing. ACM Trans Graph, 2003, 22(3): 943–949 · doi:10.1145/882262.882367
[9] Desbrun M, Meyer M, Schröder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of Siggraph 99. New York: Association for Computing Machinery, 1999. 317–324
[10] Bobenko A I, Schröder P. Discrete Willmore flow. In: Desbrun M, Pottmann H, eds. Geometry Processing 2005. Wellesley: A K Peters, 2005. 101–110
[11] Ohtake Y, Belyev A, Bogaevski I A. Polyhedral surface smoothing with simultaneous mesh regularization. In: Martin R, Wang W, eds. Geometric Modeling and Processing 2000: Theory and Applications. Los Alamitos: IEEE Computer Society, 2000. 229–237
[12] Yoshizawa S, Belyaev A G. Fair triangle mesh generations via discrete elastica. In: Suzuki H, Martin R, eds. Geometric Modeling and Processing: Theory and Applications. Los Alamitos: IEEE Computer Society, 2002. 119–123
[13] Bajaj C L, Xu G. Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans Graph, 2003, 22(1): 4–32 · doi:10.1145/588272.588276
[14] Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing. In: Proceedings of IEEE Visualization 2000. Los Alamitos: IEEE Computer Society, 2000. 397–406
[15] Hilderbrandt K, Polthier K. Anisotropic filtering of non-linear surface features. Comput Graph Forum, 2004, 23(3): 391–400 · doi:10.1111/j.1467-8659.2004.00770.x
[16] Ohtake Y, Belyaev A, Seidel H P. Mesh smoothing by adaptive and anisotropic Gaussian filter applied to mesh normals. In: Greine G, Niemann H, Ertl T, et al., eds. Vision, Modeling, and Visualization 2002. Amsterdam: IOS press, 2002. 203–210
[17] Tasdizen T, Whitaker R, Burchard P, et al. Geometric surface smoothing via anisotropic diffusion of normals. In: Proceedings of IEEE Visualization 2002. Los Alamitos: IEEE Computer Society, 2002. 125–132
[18] Yagou H, Ohtake Y, Belyaev A. Mesh smoothing via mean and median filtering applied to face normals. In: Suzuki H, Martin R, eds. Geometric Modeling and Processing: Theory and Applications. Los Alamitos: IEEE Computer Society, 2002. 124–131
[19] Welch W, Witkin A. Free-form shape design using triangulated surfaces. In: Proceedings of Siggraph 94. New York: Association for ComputingMachinery, 1994. 157–166
[20] Kobbelt L. Discrete fairing. In: Goodman T, Martin R, eds. The Mathematics of Surfaces VII. Winchester: Information Geometers, 1997. 101–131
[21] Kobbelt L, Campagna S, Vorsatz J, et al. Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of the SIGGRAPH 98. New York: Association for Computing Machinery, 1998. 105–114
[22] Schneider R, Kobbelt L. Generating fair meshes with G1 boundary conditions. In: Martin R, Wang W, eds. Geometric Modeling and Processing 2000: Theory and Applications. Los Alamitos: IEEE Computer Society, 2000. 251–261
[23] Schneider R, Kobbelt L. Geometric fairing of irregularmeshes for free-form surface design. Comput Aid Geom Des, 2001, 18(4): 359–379 · Zbl 0969.68154 · doi:10.1016/S0167-8396(01)00036-X
[24] Xu G, Pan Q, Bajaj C. Discrete surface modelling using partial differential equations. Comput Aid Geom Des, 2006, 23(2): 125–145 · Zbl 1083.65018 · doi:10.1016/j.cagd.2005.05.004
[25] Beier K P, Chen Y. Highlight-line algorithm for realtime surface-quality assessment. Comput Aid Des, 1994, 26(4): 268–277 · Zbl 0802.65149 · doi:10.1016/0010-4485(94)90073-6
[26] Yong J H, Cheng F. Geometric Hermite curves with minimum strain energy. Comput Aid Geom Des, 2004, 21(3): 281–301 · Zbl 1069.65541 · doi:10.1016/j.cagd.2003.08.003
[27] Chen Y, Beier K P, Papageorgiou D. Direct highlight line modification on NURBS surfaces. Comput Aid Geom Des, 1997, 14(6): 583–601 · Zbl 0896.65020 · doi:10.1016/S0167-8396(96)00048-9
[28] Yong J H, Cheng F, Chen Y, et al. Dynamic highlight line generation for locally deforming NURBS surfaces. Comput Aid Des, 2003, 35(10): 881–892 · doi:10.1016/S0010-4485(02)00165-3
[29] Cormen T, Leiserson C, Rivest R, et al. Introduction to Algorithms. 2nd ed. Cambridge: MIT Press, 2003. 41–51
[30] Willmore T J. Riemannian Geometry. New York: Oxford University Press, 1993. 201–268
[31] Meyer M, Desbrun M, Schröder P, et al. Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege H C, Polthier K, eds. Visualization and Mathematics III. New York: Springer-Verlag, 2003. 35–57 · Zbl 1069.53004
[32] Nocedal J, Wright S. Numerical Optimization. New York: Springer, 1999. 455–473 · Zbl 0930.65067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.