×

Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine. (English) Zbl 1356.76132

Summary: Purpose{ } - The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. { }Design/methodology/approach{ } - Large eddy simulations with four different models for the turbulent flow are used: a one-equation model, a dynamic one-equation model, a localized dynamic one-equation model and a mixed-scale model. Simulations are carried out for two different geometries corresponding to 100 and 50 percent open scavenge ports. { }Findings{ } - It is found that the mean tangential profile inside the cylinder changes qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement. { }Research limitations/implications{ } - Considering the complexity of the real engine, the authors designed the engine model using the simplest configuration possible. The setup contains no moving parts, the combustion is neglected and the exhaust valve is discarded. { }Originality/value{ } - Studying the flow in a simplified engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI

References:

[1] Alekseenko, S.V. , Koubin, P.A. , Okulov, V.L. and Shtork, S.I. (1999), ”Helical vortices in swirl flow”, J. Fluid Mech., Vol. 382, pp. 195-243. , · Zbl 0941.76014 · doi:10.1108/HFF-09-2011-0189
[2] Bardina, J. , Ferziger, J.H. and Reynolds, W.C. (1980), ”Improved subgrid models for large eddy simulation”, AIAA Paper 80-1357.
[3] Craft, T. , Iacovides, H. , Launder, B. and Zacharos, A. (2008), ”Some swirling-flow challenges for turbulent CFD”, Flow, Turbul. Combust., Vol. 80, pp. 419-434. , · Zbl 1257.76036 · doi:10.1108/HFF-09-2011-0189
[4] Davidson, L. (1997), ”Large-eddy simulations: a dynamic one-equation subgrid model for three-dimensional recirculating flows”, In the International Symposium on Turbulent Shear Flow, Vol. 3, pp. 261-266.
[5] Davidson, L. (2009), ”Large eddy simulations: how to evaluate resolution”, Int. J. Heat Fluid Flow, Vol. 30 No. 5, pp. 1016-1025. , · Zbl 1356.76132 · doi:10.1108/HFF-09-2011-0189
[6] de Castro Gouveia, M. , dos Reis Parise, J.A. and Nieckele, A.O. (1992), ”Numerical simulation of the fluid flow and heat transfer processes during scavenging in two-stroke engine under steady-state conditions”, J. Heat Transfer, Vol. 114 No. 2, pp. 383-393. , · Zbl 1356.76132 · doi:10.1108/HFF-09-2011-0189
[7] George, W.K. , Beuther, P.D. and Lumley, J.L. (1978), ”Processing of random signals”, Proceedings of the Dynamic Flow Conference, pp. 757-800.
[8] Germano, M. , Piomelli, U. , Moin, P. and Cabot, W.H. (1991), ”A dynamic subgrid-scale eddy viscosity model”, Phys. Fluids, Vol. 3 No. 7, pp. 1760-1765. , · Zbl 0825.76334 · doi:10.1108/HFF-09-2011-0189
[9] Ghosal, S. , Lund, T.S. , Moin, P. and Akselvoll, K. (1995), ”A dynamic localization model for large-eddy simulation of turbulent flows”, J. Fluid Mech., Vol. 286, pp. 229-255. , · Zbl 0837.76032 · doi:10.1108/HFF-09-2011-0189
[10] Haider, S. , Schnipper, T. , Obeidat, A. , Meyer, K.E. , Okulov, V.L. , Mayer, S. and Walther, J.H. (2012), ”Piv study of the effect of piston position on the in-cylinder swirling flow during the scavenging process in large two-stroke marine diesel engines”, J. Mar. Sci. Technol., Vol. 18 No. 1, under review. · Zbl 1356.76132 · doi:10.1108/HFF-09-2011-0189
[11] Issa, R.I. (1985), ”Solution of the implicitly discretised fluid flow equations by operator-splitting”, J. Comput. Phys., Vol. 62, pp. 40-65. , · Zbl 0619.76024 · doi:10.1108/HFF-09-2011-0189
[12] Leibovich, S. (1978), ”The structure of vortex breakdown”, Annu. Rev. Fluid Mech., Vol. 10, pp. 221-246. , · Zbl 1356.76132 · doi:10.1108/HFF-09-2011-0189
[13] Lesieur, M. , Métais, O. and Comte, P. (2005), Large Eddy Simulations of Turbulence, Cambridge University Press, Cambridge. · Zbl 1101.76002
[14] Lucca-Negro, O. and O’Doherty, T. (2001), ”Vortex breakdown: a review”, Prog. Energy Combust. Sci., Vol. 27, pp. 431-481. , · Zbl 1356.76132 · doi:10.1108/HFF-09-2011-0189
[15] Pope, S.B. (2004), ”Ten questions concerning the large-eddy simulation of turbulent flows”, New J. Phys., Vol. 6, pp. 1-24. , · Zbl 1356.76132 · doi:10.1108/HFF-09-2011-0189
[16] Saffman, P.G. (1992), Vortex Dynamics, Cambridge University Press, Cambridge. · Zbl 0777.76004
[17] Sagaut, P. (1998), Large Eddy Simulation for Incompressible Flows, Springer, New York, NY. · Zbl 0927.76001
[18] Schiestel, R. (2007), Modeling and Simulation of Turbulent Flows, Wiley, New York, NY. · Zbl 0868.76002
[19] Schlichting, H. (1979), Boundary-Layer Theory, 7th ed., McGraw Hill, New York, NY. · Zbl 0434.76027
[20] Schumann, U. (1975), ”Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli”, J. Comput. Phys., Vol. 18, pp. 376-404. , · Zbl 0403.76049 · doi:10.1108/HFF-09-2011-0189
[21] Schweitzer, P.H. (1949), Scavenging of Two-Stroke Cycle Diesel Engines, Macmillan, London.
[22] Shen, W.Z. , Zhu, W. and Sørensen, J.N. (2009), ”Aeroacoustic computations for turbulent airfoil flows”, AIAA J., No. 6, pp. 1518-1527.
[23] Smagorinsky, J. (1963), ”General circulation experiments with the primitive equations, part I: the basics experiment”, Monthly Weather Rev., No. 3, pp. 99-164.
[24] Syred, N. (2006), ”A review of oscillation mechanisms and the role of precessing vortex core (PVC) in swirl combustion systems”, Prog. Energy Combust. Sci., Vol. 32 No. 2, pp. 93-161. , · Zbl 1356.76132 · doi:10.1108/HFF-09-2011-0189
[25] Ta Phuoc, L. (1994), ”Modèles de sous maille appliqúes aux ecoulements instationnaires décollés”, Proceedings of the DRET Conference: Aérodynamique Instationnaire Turbulente-Aspects Numériques et Expérimentaux, Orsay, France, pp. 1-38, Lab. d’Informatique pour la Mecanique et les Sciences de l’Ingénieur, Centre Natonal de la Recherche Scientifique.
[26] Tenaud, C. , Pellerin, S. , Dulieu, A. and Ta Phuoc, L. (2005), ”Large eddy simulations of a spatially developing incompressible 3D mixing layer using the v formulation”, Computers & Fluids, Vol. 34 No. 1, pp. 67-96. , · Zbl 1115.76341 · doi:10.1108/HFF-09-2011-0189
[27] Wang, P. (2005), ”Large eddy simulation of turbulent swirling flows and turbulent premixed combustion”, PhD thesis, Lund Institute of Technology, Lund.
[28] Wilcox, D.C. (1994), ”Turbulence modeling for CFD”, DCW Industries, Inc., La Cañada Flintridge, CA.
[29] Yoshizawa, A. and Horiuti, K. (1985), ”A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows”, J. Phys. Soc. Japan, No. 8, pp. 2834-2839.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.