×

Jensen polynomials for the Riemann xi-function. (English) Zbl 1490.11086

Let \(\zeta(s)\) be the Riemann zeta function. Let \(\xi(s)=\frac{1}{2}s(s-1)\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)\) be the completed zeta function. It is well known that \[\xi(s)=\sum_{j=0}^\infty \frac{\gamma(j)}{j!} z^{2j},\] where \(\gamma(n)>0\) for all \(n\geq0\). For \(d, n \geq 0\), the degree \(d\) Jensen polynomial is defined by \(J^{d,n}(X)=\sum_{j=0}^{d} \binom{d}{j}\gamma(n+j)X^j\). A polynomial with real coefficients is hyperbolic if all of its zeros are real. G. Pólya [Meddelelser København 7, Nr. 17, 33 S. (1926; JFM 52.0336.01)] showed that the Riemann hypothesis (RH) is equivalent to the hyperbolicity of \(J^{d,n}(X)\) for all \(d, n \geq 0\). In this direction, it was proved that for all \(d\geq 1\), there is a non-effective \(N(d)>0\) such that if \(n\geq N(d)\), then \(J^{d,n}(X)\) is hyperbolic. In this paper, the authors provide an effective upper bound for \(N(d)\) as follows: There is a constant \(c > 0\) such that if \(n>ce^d\), then \(J^{d,n}(X)\) is hyperbolic. As consequence, they also showed that if \(d\leq 9\times 10^{24}\) and \(n\geq 0\), then \(J^{d,n}(X)\) is hyperbolic.

MSC:

11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
11M06 \(\zeta (s)\) and \(L(s, \chi)\)

Citations:

JFM 52.0336.01

Software:

DLMF

References:

[1] Berry, M. V., Universal oscillations of high derivatives, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 2058, 1735-1751 (2005) · Zbl 1139.30315
[2] Bombieri, E., New progress on the zeta function: from old conjectures to a major breakthrough, Proc. Natl. Acad. Sci. USA, 116, 23, 11085-11086 (2019) · Zbl 1431.11104
[3] Borcea, J.; Brändén, P., Pólya-Schur master theorems for circular domains and their boundaries, Ann. Math., 170, 1, 465-492 (2009) · Zbl 1184.30004
[4] Broughan, K., Equivalents of the Riemann Hypothesis, vol. 2 (2017), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1427.11002
[5] Chasse, M., Laguerre multiplier sequences and sector properties of entire functions, Complex Var. Elliptic Equ., 58, 7, 875-885 (2013) · Zbl 1291.30032
[6] Csordas, G.; Norfolk, T. S.; Varga, R. S., The Riemann hypothesis and the Turán inequalities, Transl. Am. Math. Soc., 296, 521-541 (1986) · Zbl 0602.30030
[7] Csordas, G.; Varga, R. S., Necessary and sufficient conditions and the Riemann hypothesis, Adv. Appl. Math., 11, 3, 328-357 (1990) · Zbl 0707.11062
[8] Dimitrov, D. K.; Lucas, F. R., Higher order Turán inequalities for the Riemann ξ-function, Proc. Am. Math. Soc., 139, 1013-1022 (2010) · Zbl 1214.11092
[9] F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders (Eds.), NIST Digital Library of Mathematical Functions. Release 1.0.23 of 2019-06-15. http://dlmf.nist.gov/.
[10] Farmer, D. W., Jensen polynomials are not a viable route to proving the Riemann hypothesis (2020), arXiv preprint
[11] Griffin, M.; Ono, K.; Rolen, L.; Zagier, D., Jensen polynomials for Riemann’s zeta function and suitable arithmetic sequences, Proc. Natl. Acad. Sci. USA, 116, 23, 11103-11110 (2019) · Zbl 1431.11105
[12] Levin, B. Ja., Distribution of Zeros of Entire Functions, Translations of Mathematical Monographs, vol. 5 (1980), American Mathematical Society: American Mathematical Society Providence, R.I., Translated from the Russian by R.P. Boas, J.M. Danskin, F.M. Goodspeed, J. Korevaar, A.L. Shields, and H.P. Thielman
[13] Obreschkoff, N., Sur une généralisation du théoreme de Poulain et Hermite pour le zéros réells des polynomes réells, Acta Math. Acad. Sci. Hung., 12, 175-184 (1961) · Zbl 0098.24802
[14] O’Sullivan, C., Zeros of Jensen polynomials and asymptotics for the Riemann xi function (2020), arXiv preprint
[15] Pólya, G., Über die algebraisch-funktionentheoretischen Untersuchungen von J. L. W. V. Jensen, Kgl. Danske Vid. Sel. Math.-Fys. Medd., 7, 3-33 (1927) · JFM 53.0309.01
[16] Platt, D.; Trudgian, T., The Riemann hypothesis is true up to \(3 \cdot 10^{12}\), Bull. Lond. Math. Soc., 53, 3, 792-797 (2021) · Zbl 1482.11111
[17] Turán, P., To the analytical theory of algebraic equations, Bulgar. Akad. Nauk Otd. Mat. Fiz. Nauk Izv. Mat. Inst., 3, 123-137 (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.