×

Comparison of two higher accuracy unstructured scale-resolving approaches applied to dual-stream nozzle jet simulation. (Russian. English summary) Zbl 1491.76009

Summary: Dual-stream nozzle jet computations conducted using different numerical algorithms developed in TsAGI and KIAM RAS are presented. Scale-resolving approaches of DES family based on higher accuracy numerical methods are applied. The flow considered was studied experimentally at ITAM SB RAS. The jet was axisymmetric up to the influence of the supporting pylons, cold, subsonic at the inner nozzle exit and supersonic at the outer nozzle exit. The computational data is compared with the experiment and with each other.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing

Software:

NOISETTE

References:

[1] V. Vlasenko, S. Bosniakov, S. Mikhailov, A. Morozov, A. Troshin, “Computational approach for investigation of thrust and acoustic performances of present-day nozzles”, Prog. Aerosp. Sci., 46:4 (2010), 141-197 · doi:10.1016/j.paerosci.2009.10.002
[2] A. Savelyev, N. Zlenko, E. Matyash, S. Mikhaylov, A. Shenkin, “Optimal design and installation of ultra high bypass ratio turbofan nacelle”, Proc. AIP Conf., 1770 (2016), 030123 · doi:10.1063/1.4964065
[3] J. F. Groeneweg, E. J. Rice, “Aircraft turbofan noise”, J. Turbomachinery, 109 (1987), 130-141 · doi:10.1115/1.3262058
[4] N. A. Zlenko, S. V. Mikhailov, A. A. Savelev, A. V. Shenkin, “Metodika optimalnogo aerodinamicheskogo proektirovaniia motogondoly TRDD s bolshoi stepeniu dvukhkonturnosti”, Uch. Zapiski TsAGI, 46:6 (2015), 20-38
[5] N. W. M. Ko, A. S. H. Kwan, “The initial region of subsonic coaxial jets”, J. Fluid Mech., 73:2 (1976), 305-332 · doi:10.1017/S0022112076001389
[6] E. Murakami, D. Papamoschou, “Mean Flow Development in Dual-Stream Compressible Jets”, AIAA J., 40:6 (2002), 1131-1138 · doi:10.2514/2.1762
[7] R. I. Sujith, R. Ramesh, S. Pradeep, S. Sriram, T. M. Muruganandam, “Mixing of high speed coaxial jets”, Exp. Fluids, 30:3 (2001), 339-345 · doi:10.1007/s003480000203
[8] V. I. Zapryagaev, N. P. Kiselev, A. A. Pivovarov, “Gasdynamic structure of an axisymmetric supersonic underexpanded jet”, Fluid Dynamics, 50:1 (2015), 87-97 · Zbl 1325.76014 · doi:10.1134/S001546281501010X
[9] A. P. Markesteijn, S. A. Karabasov, “GPU CABARET Solutions for the CoJen Jet Noise Experiment”, 2018 AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum, AIAA 2018-3921 · doi:10.2514/6.2018-3921
[10] V. A. Semiletov, P. G. Yakovlev, S. A. Karabasov, G. A. Faranosov, V. F. Kopiev, “Jet and jet-wing noise modelling based on the Cabaret Miles flow solver and the Ffowcs Williams Hawkings method”, Intern. J. of Aeroacoustics, 15:6-7 (2016), 631-645 · doi:10.1177/1475472X16659387
[11] L. A. Benderskii, D. A. Liubimov, “Primenenie RANS/ILES metoda vysokogo razresheniia dlia issledovaniia slozhnykh turbulentnykh strui”, Uch. Zap. TsAGI, 45:2 (2014), 22-36
[12] J. Verriere, F. Gand, S. Deck, “Zonal detached-eddy simulations of a dual-stream jet”, AIAA J., 54:10 (2016), 3176-3190 · doi:10.2514/1.J054896
[13] M. L. Shur, P. R. Spalart, M. K. Strelets, “Noise Prediction for Underexpanded Jets in Static and Flight Conditions”, AIAA J., 49:9 (2011), 2000-2017 · doi:10.2514/1.J050776
[14] P. R. Spalart, “Detached-eddy simulation”, Annu. Rev. Fluid. Mech., 41 (2009), 181-202 · Zbl 1159.76036 · doi:10.1146/annurev.fluid.010908.165130
[15] F. Bassi. S. Rebay, “A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations”, J. Comp. Phys., 131 (1997), 267-279 · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[16] R. Hartmann, “Wall-resolved and wall-modeled ILES based on high-order DG”, Proc. ECCOMAS (ECCM-ECFD) 2018 Conference (Glasgow, UK), 14 pp.
[17] J. B. Chapelier, M. de la Llave Plata, E. Lamballais, “Development of a multiscale LES model in the context of a modal DG method”, Comp. Meth. Appl. Mech. Eng., 307 (2016), 275-299 · Zbl 1436.76021 · doi:10.1016/j.cma.2016.04.031
[18] P. Bakhvalov, I. Abalakin, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331-356 · doi:10.1002/fld.4187
[19] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comp. Fluids, 157 (2017), 312-324 · Zbl 1390.76550 · doi:10.1016/j.compfluid.2017.09.004
[20] S. M. Bosnyakov, S. V. Mikhaylov, V. Yu. Podaruev, A. I. Troshin, “Unsteady Discontinuous Galerkin Method of a High Order of Accuracy for Modeling Turbulent Flows”, Mathematical Models and Computer Simulations, 11:1 (2019), 22-34 · doi:10.1134/S2070048219010058
[21] I. S. Bosnyakov, S. V. Mikhaylov, V. Yu. Podaruev, A. I. Troshin, V. V. Vlasenko, A. V. Wolkov, “Application of high-order discontinuous Galerkin method to LES/DES test cases using computers with high number of cores”, Proc. 23rd AIAA Computational Fluid Dynamics Conference (USA, Denver, Colorado, 5-9 June 2017), 13 pp.
[22] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. Kh. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comp. Fluid Dyn., 20 (2006), 181-195 · Zbl 1112.76370 · doi:10.1007/s00162-006-0015-0
[23] M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turbulence Combust., 95:4 (2015), 709-737 · doi:10.1007/s10494-015-9618-0
[24] B. van Leer, W. T. Lee, P. L. Roe, K. G. Powell, C. H. Tai, “Design of optimally smoothing multistage schemes for the Euler equations”, Comm. Appl. Numer. Meth., 8:10 (1992), 761-769 · Zbl 0758.76043 · doi:10.1002/cnm.1630081006
[25] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows (Belgium, Antwerpen, 1997), 99-109
[26] P. O. Persson, J. Peraire, “Sub-cell shock capturing for discontinuous Galerkin methods”, Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit (USA, Reno, 9-12 January 2006), 14 pp.
[27] F. R. Menter, Improved two-equation \(k-\omega\) turbulence models for aerodynamic flows, NASA TM-103975, 1992
[28] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale computations of aerodynamics and aero-acoustics problems”, Vychisl. Metody Programm., 13:3 (2012), 110-125
[29] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. V. Garbaruk, “Analysis of jet-noise-reduction concepts by large-eddy simulation”, Intern. J. of Aeroacoustics, 6 (2007), 243-285 · doi:10.1260/147547207782419561
[30] C. Mockett, M. Fuchs, A. Garbaruk, F. Thiele, M. Shur, M. Strelets, A. Travin, P. Spalart, “Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES”, Notes on Numerical Fluid Mechanics, 130 (2015), 187-201
[31] A.P. Duben, “Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes”, Mathematical Models and Computer Simulations, 6:2 (2014), 162-171 · Zbl 1357.65117 · doi:10.1134/S2070048214020045
[32] A. Duben, T. Kozubskaya, Jet Noise Simulation Using Quasi-1D Schemes on Unstructured Meshes, AIAA-paper 2017-3856, 2017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.