×

Effects of buoyancy on turbulent scalar flux closure for turbulent premixed flames in the context of Reynolds averaged Navier-Stokes simulations. (English) Zbl 1519.80208

MSC:

80A25 Combustion
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
76V05 Reaction effects in flows

References:

[1] Chomiak, J.; Nisbet, J. R., Modeling variable density effects in turbulent flames—Some basic considerations, Combust. Flame, 102, 371-386 (1995)
[2] Shepherd, I. G.; Moss, J. B.; Bray, K. N.C., Turbulent transport in a confined premixed flame, Proc. Combust. Inst., 19, 423-431 (1982)
[3] Veynante, D.; Poinsot, T., Effects of pressure gradients on turbulent premixed flames, J. Fluid Mech., 353, 83-114 (1997) · Zbl 0903.76097
[4] Varma, A.; Ahmed, U.; Chakraborty, N., Effects of body forces on the statistics of flame surface density and its evolution in statistically planar turbulent premixed flames, Flow Turbul. Combust. (2021) · doi:10.1007/s10494-021-00268-9
[5] Varma, A.; Ahmed, U.; Chakraborty, N., Effects of body forces on vorticity and enstrophy evolutions in turbulent premixed flames, Phys. Fluids, 33, 035102 (2021)
[6] Bray, K. N.C.; Libby, P. A.; Moss, J. B., Unified modelling approach for premixed turbulent combustion - Part I: General formulation, Combust. Flame, 61, 87-102 (1985)
[7] Cheng, R. K.; Shepherd, I. G., Influence of burner geometry on premixed turbulent flame propagation, Combust. Flame, 85, 7-26 (1991)
[8] Kalt, P. A.M.; Chen, Y. C.; Bilger, R. W., Experimental investigation of turbulent scalar flux in premixed stagnation-type flames, Combust. Flame, 129, 401-415 (2002)
[9] Veynante, D.; Trouvé, A.; Bray, K. N.C.; Mantel, T., Gradient and counter-gradient turbulent scalar transport in turbulent premixed flames, J. Fluid Mech., 332, 263-293 (1997) · Zbl 0900.76738
[10] Swaminathan, N.; Bilger, R. W.; Cuenot, B., Relationship between turbulent scalar flux and conditional dilatation in premixed flames with complex chemistry, Combust. Flame, 126, 1764-1779 (2001)
[11] Nishiki, S.; Hasegawa, T.; Borghi, R.; Himeno, R., Modelling of turbulent scalar flux in turbulent premixed flames based on DNS database, Combust. Theor. Model., 10, 39-55 (2006) · Zbl 1119.80013
[12] Chakraborty, N.; Cant, R. S., Effects of Lewis number on scalar transport in turbulent premixed flames, Phys. Fluids, 21, 035110 (2009) · Zbl 1183.76135
[13] Chakraborty, N.; Cant, R. S., Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames, Combust. Flame, 156, 1427-1444 (2009)
[14] Chakraborty, N.; Cant, R. S., Physical insight and modelling for Lewis number effects on turbulent heat and mass transport in turbulent premixed flames, Numer. Heat Transf. A Appl., 55, 762-779 (2009)
[15] Chakraborty, N.; Cant, R. S., Effects of turbulent Reynolds number on the modelling of turbulent scalar flux in premixed flames, Numer. Heat Transf. A Appl., 67, 11, 1187-1207 (2015)
[16] Lai, J.; Alwazzan, D.; Chakraborty, N., Turbulent scalar flux transport in head-on quenching of turbulent premixed flames in the context of Reynolds averaged Navier Stokes simulations, J. Turbul., 18, 11, 1033-1066 (2017)
[17] Papapostolopu, V.; Chakraborty, N.; Klein, M.; Im, H. G., Statistics of scalar flux transport of major species in different premixed turbulent combustion regimes for H_2-air flames, Flow Turbul. Combust., 102, 931-955 (2019)
[18] Pfadler, S.; Kerl, J.; Beyrau, F.; Leipertz, A.; Sadiki, A.; Scheuerlein, J.; Dinkelacker, F., High resolution dual-plane stereo-PIV for validation of subgrid scale models in large-eddy simulations of turbulent premixed flames, Proc. Combust. Inst., 32, 1723-1730 (2009)
[19] Pfadler, S.; Dinkelacker, F.; Beyrau, F.; Leipertz, A., High resolution dual-plane stereo-PIV for validation of subgrid scale models in large-eddy simulations of turbulent premixed flames, Combust. Flame, 156, 1552-1564 (2009)
[20] Boger, M.; Veynante, D.; Boughanem, H.; Trouvé, A., Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion, Proc. Combust. Inst., 27, 917-925 (1998)
[21] Weller, W. G.; Tabor, G.; Gosman, A. D.; Fureby, C., Application of flame wrinkling LES combustion model to a turbulent mixing layer, Proc. Combust. Inst., 27, 899-907 (1998)
[22] Rymer, G., Analysis and modeling of the mean reaction rate and transport terms in turbulent premixed combustion, Ph.D. diss., École Centrale Paris, 2001.
[23] Tullis, S.W., Large eddy simulation of scalar flux in turbulent premixed flames, Ph.D. thesis, Cambridge University, UK, 2003.
[24] Tullis, S. W.; Cant, R. S., Scalar transport modeling in large eddy simulation of turbulent premixed flames, Proc. Combust. Inst., 29, 2097-2104 (2003)
[25] Huai, Y.; Sadiki, A.; Pfadler, S.; Loffler, M.; Beyrau, F.; Leipertz, A.; Dinkelacker, F., Experimental assessment of scalar flux models for large eddy simulations of non-reacting flows, Turbul. Heat Mass Transf., 5, 263-266 (2006)
[26] Richard, S.; Colin, O.; Vermorel, O.; Angelberger, C.; Benkenida, A.; Veynante, D., Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst., 31, 3059-3066 (2007)
[27] Lecocq, G.; Richard, S.; Colin, O.; Vervisch, L., Gradient and counter-gradient modeling in premixed flames: Theoretical study and application to the LES of a lean premixed turbulent swirl-burner, Combust. Sci. Technol., 182, 465-479 (2010)
[28] Gao, Y.; Chakraborty, N.; Klein, M., Assessment of sub-grid scalar flux modelling in premixed flames for large eddy simulations: A-priori direct numerical simulation, Eur. J. Mech. B Fluids, 52, 97-108 (2015) · Zbl 1408.76310
[29] Gao, Y.; Chakraborty, N.; Klein, M., Assessment of the performances of sub-grid scalar flux models for premixed flames with different global Lewis numbers: A direct numerical simulation analysis, Int. J. Heat Fluid Flow, 52, 28-39 (2015)
[30] Klein, M.; Chakraborty, N.; Gao, Y., Scale similarity based models and their application to subgrid scale scalar flux modelling in the context of turbulent premixed flames, Int. J. Heat Fluid Flow, 57, 91-108 (2016)
[31] Klein, M.; Kasten, C.; Chakraborty, N.; Mukhadiyev, N.; Im, H. G., Turbulent scalar fluxes in hydrogen-air premixed flames at low and high Karlovitz numbers, Combust. Theor. Model., 22, 1033-1048 (2018) · Zbl 1519.80106
[32] Nikolaou, Z. M.; Cant, R. S.; Vervisch, L., Scalar flux modeling in turbulent flames using iterative deconvolution, Phys. Rev. E, 3, 043201 (2018)
[33] Keil, F. B.; Amzehnhoff, M.; Ahmed, U.; Chakraborty, N.; Klein, M., Comparison of flame propagation statistics extracted from DNS based on simple and detailed chemistry part 1: Fundamental flame turbulence interaction, Energies, 14, 5548 (2021)
[34] Keil, F. B.; Amzehnhoff, M.; Ahmed, U.; Chakraborty, N.; Klein, M., Comparison of flame propagation statistics extracted from DNS based on simple and detailed chemistry part 2: Influence of choice of reaction progress variable, Energies, 14, 5695 (2021)
[35] Jenkins, K. W.; Cant, R. S.; Liu, C.; Sakell, L.; Beautner, T., Proc. second AFOSR conf. on DNS and LES, DNS of turbulent flame kernels, 191-202 (1999), Kluwer Academic Publishers: Kluwer Academic Publishers, Dordrecht · Zbl 0948.76557
[36] Wray, A. A., Minimal Storage Time Advancement Schemes for Spectral Methods (1990), NASA Ames Research Center: NASA Ames Research Center, California, CA
[37] Poinsot, T.; Veynante, D., Theoretical and Numerical Combustion (2001), R.T. Edwards Inc.: R.T. Edwards Inc., Philadelphia, PA, USA
[38] Rogallo, R. S., Numerical Experiments in Homogeneous Turbulence (1981), NASA Ames Research Center: NASA Ames Research Center, California, CA
[39] Poinsot, T.; Lele, S. K., Boundary conditions for direct simulation of compressible viscous flows, J. Comput. Phys., 101, 104-129 (1992) · Zbl 0766.76084
[40] Peters, N., Turbulent Combustion (2000), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0955.76002
[41] Chakraborty, N.; Lipatnikov, A., Conditional velocity statistics for high and low Damköhler number turbulent premixed combustion in the context of Reynolds averaged Navier Stokes simulations, Proc. Combust. Inst., 34, 1333-1345 (2013)
[42] Chakraborty, N.; Lipatnikov, A. N., Effects of Lewis number on the statistics of conditional fluid velocity in turbulent premixed combustion in the context of Reynolds averaged Navier Stokes simulations, Phys. Fluids, 25, 045101 (2013)
[43] Durbin, P. A.; Pettersson Reif, B. A., Statistical Theory and Modelling for Turbulent Flows (2001), John Wiley & Sons: John Wiley & Sons, Chichester · Zbl 1030.76001
[44] Bray, K. N.C.; Champion, M.; Libby, P. A.; Libby, P. A.; Williams, F. A., Turbulent Reacting Flows, The interaction between turbulence and chemistry in premixed turbulent flows, 541-563 (1989), Springer Verlag
[45] Daly, B. J.; Harlow, F. H., Transport equations of turbulence, Phys. Fluids, 13, 2634-2649 (1970)
[46] Launder, B. L., Second-moment closure: present … and future, Int. J. Heat Fluid Flow, 10, 282-300 (1989)
[47] Craft, T.; Graham, L.; Launder, B., Impinging jet studies for turbulence model assessment - II. An examination of the performance of four turbulence models, Int. J. Heat Mass Transfer, 36, 2687-2697 (1993)
[48] Durbin, P. A., A Reynolds stress model for near-wall turbulence, J. Fluid. Mech., 249, 465-493 (1993)
[49] Jones, W. P.; Libby, P. A.; Williams, F. A., Turbulent Reacting flows, Turbulence modelling and numerical solution methods for variable density and combusting flows, 309-374 (1994), Academic Press: Academic Press, London · Zbl 0856.76028
[50] Bradley, D.; Gaskell, P. H.; Gu, X. J., Application of a Reynolds stress, stretched flamelet, mathematical model to computations to turbulent burning velocities and comparison with experiments, Combust. Flame, 96, 221-248 (1994)
[51] Lindstedt, R. P.; Vaos, E. M., Modelling of premixed turbulent flames with second moment methods, Combust. Flame, 116, 461-485 (1999)
[52] Domingo, P.; Bray, K. N.C., Laminar flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion, Combust. Flame, 121, 555-574 (2000)
[53] Clark, R. A.; Ferziger, J. H.; Reynolds, W. C., Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid. Mech., 91, 1-16 (1979) · Zbl 0394.76052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.