×

Conservation laws with discontinuous flux function on networks: a splitting algorithm. (English) Zbl 1532.90021

Summary: In this article, we present an extension of the splitting algorithm proposed in [J. D. Towers, J. Comput. Phys. 421, Article ID 109722, 30 p. (2020; Zbl 1537.76009)] to networks of conservation laws with piecewise linear discontinuous flux functions in the unknown. We start with the discussion of a suitable Riemann solver at the junction and then describe a strategy how to use the splitting algorithm on the network. In particular, we focus on two types of junctions, i.e., junctions where the number of outgoing roads does not exceed the number of incoming roads (dispersing type) and junctions with two incoming and one outgoing road (merging type). Finally, numerical examples demonstrate the accuracy of the splitting algorithm by comparisons to the exact solution and other approaches used in the literature.

MSC:

90B10 Deterministic network models in operations research
90B20 Traffic problems in operations research
35L65 Hyperbolic conservation laws

Citations:

Zbl 1537.76009

References:

[1] M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska Gwiazda, On scalar hyperbolic conservation laws with a discontinuous flux, Math. Models. Methods. Appl. Sci., 21 (2011), 89-113. https://doi.org/10.1142/S021820251100499X · Zbl 1217.35117 · doi:10.1142/S021820251100499X
[2] R. Bürger, C. Chalons, R. Ordoñez, L. M. Villada, A multiclass lighthill-whitham-richards traffic model with a discontinuous velocity function, Netw. Heterog. Media., 16 (2021), 187-219. https://doi.org/10.3934/nhm.2021004 · Zbl 1473.65095 · doi:10.3934/nhm.2021004
[3] J. Carrillo, Conservation laws with discontinuous flux functions and boundary condition, J. Evol. Equ., 3 (2003), 283-301. https://doi.org/10.1007/s00028-003-0095-x · Zbl 1027.35069 · doi:10.1007/s00028-003-0095-x
[4] A. Ceder, A deterministic traffic flow model for the two-regime approach, Trans. Res. Rec., 567 (1976), 16-30.
[5] A. Ceder, A. D. May, Further evaluation of single-and two-regime traffic flow models, Trans Res Rec, 567 (1976), 1-15.
[6] G. M. Coclite, M. Garavello, B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. https://doi.org/10.1137/S0036141004402683 · Zbl 1114.90010 · doi:10.1137/S0036141004402683
[7] J.P. Dias, M. Figueira, On the approximation of the solutions of the Riemann problem for a discontinuous conservation law, Bull. Braz. Math. Soc. (N.S.), 36 (2005), 115-125. https://doi.org/10.1007/s00574-005-0031-5 · Zbl 1086.35067 · doi:10.1007/s00574-005-0031-5
[8] L. C. Edie, Car-following and steady-state theory for noncongested traffic, Operations Research, 9 (1961), 66-76. · Zbl 0097.34002
[9] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Providence: American Mathematical Society, 1998. · Zbl 0902.35002
[10] A. Festa, S. Göttlich, M. Pfirsching, A model for a network of conveyor belts with discontinuous speed and capacity, Netw. Heterog. Media, 14 (2019), 389-410. https://doi.org/10.3934/nhm.2019016 · Zbl 1423.90077 · doi:10.3934/nhm.2019016
[11] M. Garavello, K. Han, B. Piccoli, Models for vehicular traffic on networks, AIMS Series on Applied Mathematics, Springfield: American Institute of Mathematical Sciences, 2016. · Zbl 1351.90045
[12] M. Garavello, B. Piccoli, Traffic flow on networks, Springfield: American Institute of Mathematical Sciences (AIMS), 2006. · Zbl 1136.90012
[13] T. Gimse, Conservation laws with discontinuous flux functions, SIAM J. Math. Anal., 24 (1993), 279-289. https://doi.org/10.1137/0524018 · Zbl 0801.35081 · doi:10.1137/0524018
[14] S. Göttlich, A. Klar, P. Schindler, Discontinuous conservation laws for production networks with finite buffers, SIAM J. Appl. Math., 73 (2013), 1117-1138. https://doi.org/10.1137/120882573 · Zbl 1273.90074 · doi:10.1137/120882573
[15] H. Holden, N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. https://doi.org/10.1137/S0036141093243289 · Zbl 0833.35089 · doi:10.1137/S0036141093243289
[16] J. P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, Proc. 13th Intrn. Symp. Transportation and Traffic Theory, (1996).
[17] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge: Cambridge University Press, 2002. · Zbl 1010.65040
[18] M. J. Lighthill, G. B. Witham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Royal Society, A 229 (1955), 317-345. https://doi.org/10.1098/rspa.1955.0089 · Zbl 0064.20906 · doi:10.1098/rspa.1955.0089
[19] Y. Lu, S. C. Wong, M. Zhang, C.W. Shu, The entropy solutions for the lighthill-whitham-richards traffic flow model with a discontinuous flow-density relationship, Trans Sci, 43 (2009), 511-530. https://doi.org/10.1287/trsc.1090.0277 · doi:10.1287/trsc.1090.0277
[20] S. Martin, J. Vovelle, Convergence of implicit finite volume methods for scalar conservation laws with discontinuous flux function, Math Model Num Analysis, 42 (2008), 699-727. https://doi.org/10.1051/m2an:2008023 · Zbl 1155.65071 · doi:10.1051/m2an:2008023
[21] P. Richards, Shock waves on highway, Operations Research, 4 (1956), 42-51. https://doi.org/10.1287/opre.4.1.42 · Zbl 1414.90094 · doi:10.1287/opre.4.1.42
[22] J. D. Towers, A splitting algorithm for LWR traffic models with flux discontinuous in the unknown, J. Comput. Phys., 421 (2020), 109722. https://doi.org/10.1016/j.jcp.2020.109722 · Zbl 1537.76009 · doi:10.1016/j.jcp.2020.109722
[23] M. Treiber, A. Kesting, Traffic flow dynamics, Data, models and simulatio, Berlin: Springer, 2013.
[24] J. K. Wiens, J. M. Stockie, J. F. Williams, Riemann solver for a kinematic wave traffic model with discontinuous flux, J. Comput. Phys., 242 (2013), 1-23. https://doi.org/10.1016/j.jcp.2013.02.024 · Zbl 1302.65206 · doi:10.1016/j.jcp.2013.02.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.