×

The anti-plane shear elasto-static fields near a crack terminating at an isotropic hyperelastic bi-material interface. (English) Zbl 07273345

Summary: In the framework of hyperelasticity, we treat the configuration of a terminated crack at the interface of an incompressible full plane composite. Considering the traction-free boundary conditions, three particular cases are discussed when a cylinder is subjected to an anti-plane shear transformation. Taking all these conditions into account, an asymptotic analysis is performed to identify the sufficient orders contributing to the singular form of the Cauchy stress static fields. Adding to that, an inquiry about the presence of logarithmic singularities was achieved using the approach of Dempsey and Sinclair.

MSC:

74-XX Mechanics of deformable solids

Software:

Matlab
Full Text: DOI

References:

[1] Destrade, M, Murphy, JG, Saccomandi, G. Simple shear is not so simple. Int J Non-Lin Mech 2012; 47(2): 210-214. · doi:10.1016/j.ijnonlinmec.2011.05.008
[2] Pucci, E, Rajagopal, K, Saccomandi, G. On the determination of semi-inverse solutions of nonlinear Cauchy elasticity: The not so simple case of anti-plane shear. Int J Eng Sci 2015; 88: 3-14. · Zbl 1423.74136 · doi:10.1016/j.ijengsci.2014.02.033
[3] Grisvard, P. Singularities in boundary value problems. In: Recherches en mathématiques appliquées, vol. 22. Berlin: Springer, 1992. · Zbl 0766.35001
[4] Zak, A, Williams, M. Crack point stress singularities at a bi-material interface. J Appl Mech 1963; 30: 142. · doi:10.1115/1.3630064
[5] Bogy, DB. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J Appl Mech 1971; 38(2): 377-386. · doi:10.1115/1.3408786
[6] Bogy, DB, Wang, KC. Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. Int J Solids Struct 1971; 7(8): 993-1005. · Zbl 0236.73020 · doi:10.1016/0020-7683(71)90077-1
[7] Cook, T, Erdogan, F. Stresses in bonded materials with a crack perpendicular to the interface. Int J Eng Sci 1972; 10(8): 677-697. · Zbl 0237.73096 · doi:10.1016/0020-7225(72)90063-8
[8] Erdogan, F, Biricikoglu, V. Two bonded half planes with a crack going through the interface. Int J Eng Sci 1973; 11(7): 745-766. · Zbl 0258.73046 · doi:10.1016/0020-7225(73)90004-9
[9] Fenner, D. Stress singularities in composite materials with an arbitrarily oriented crack meeting an interface. Int J Fract 1976; 12(5): 705-721.
[10] Pinsan, C, Zhuping, D. Singular behaviour and asymptotic stress field of a crack terminating at a bimaterial interface. Acta Mech Sin 1991; 7(4): 342-343. · Zbl 0749.73057 · doi:10.1007/BF02486742
[11] Wang, WC, Chen, JT. Singularities of an arbitrarily inclined semi-infinite crack meeting a bimaterial interface. Eng Fract Mech 1994; 49(5): 671-680. · doi:10.1016/0013-7944(94)90032-9
[12] Tzuchiang, W, Ståhle, P. A crack perpendicular to and terminating at a bimaterial interface. Acta Mech Sin 1998; 14(1): 27-36. · doi:10.1007/BF02486828
[13] Chen, S, Wang, T, Kao-Walter, S. A crack perpendicular to the bimaterial interface in finite solid. Int J Solids Struct 2003; 40(11): 2731-2755. · Zbl 1051.74647 · doi:10.1016/S0020-7683(03)00087-8
[14] Lin, Y, Sung, J. Singularities of an inclined crack terminating at an anisotropic bimaterial interface. Int J Solids Struct 1997; 34(28): 3727-3754. · Zbl 0942.74629 · doi:10.1016/S0020-7683(96)00194-1
[15] Lin, K, Mar, J. Finite element analysis of stress intensity factors for cracks at a bi-material interface. Int J Fract 1976; 12(4): 521-531. · doi:10.1007/BF00034638
[16] Ahmad, J. A micromechanics analysis of cracks in unidirectional fiber composites. ASME Tran J Appl Mech 1991; 58: 964-972. · doi:10.1115/1.2897715
[17] Meguid, S, Tan, M, Zhu, Z. Analysis of cracks perpendicular to bimaterial interfaces using a novel finite element. Int J Fract 1985; 73(1): 1-23. · doi:10.1007/BF00039848
[18] Wang, W, Chen, J. Theoretical and experimental re-examination of a crack perpendicular to and terminating at the bimaterial interface. J Strain Anal Eng Design 1993; 28(1): 53-61.
[19] Chen, JT, Wang, WC. Experimental analysis of an arbitrarily inclined semiinfinite crack terminated at the bimaterial interface. Exp Mech 1996; 36(1): 7-16. · doi:10.1007/BF02328692
[20] Erdogan, F, Cook, T. Antiplane shear crack terminating at and going through a bimaterial interface. Int J Fract 1974; 10(2): 227-240. · doi:10.1007/BF00113928
[21] Chen, CH, Wang, CL, Kuo, CC. Solutions for anti-plane problems of a composite material with a crack terminating at the interface. Arch Appl Mech 2012; 82(9): 1233-1250. · Zbl 1293.74371 · doi:10.1007/s00419-012-0612-x
[22] Hu, X, Yao, W. Stress singularity analysis of multi-material wedges under antiplane deformation. Acta Mech Sol Sin 2013; 26(2): 151-160. · doi:10.1016/S0894-9166(13)60015-4
[23] Wang, X, Meguid, S. On the general treatment of an oblique crack near a bimaterial interface under antiplane loading. Int J Solids Struct 1996; 33(17): 2485-2500. · Zbl 0926.74107 · doi:10.1016/0020-7683(95)00162-X
[24] Chien-Ching, M, Bao-Luh, H. Antiplane problems in composite anisotropic materials with an inclined crack terminating at a bimaterial interface. Int J Solids Struct 1990; 26(12): 1387-1400. · doi:10.1016/0020-7683(90)90085-A
[25] Sinclair, G. Stress singularities in classical elasticity-II: Asymptotic identification. Appl Mech Rev 2004; 57(5): 385-439. · doi:10.1115/1.1767846
[26] Sinclair, GB. Stress singularities in classical elasticity-I: Removal, interpretation, and analysis. Appl Mech Rev 2004; 57(4): 251-298. · doi:10.1115/1.1762503
[27] Paggi, M, Carpinteri, A. On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion. Appl Mech Rev 2008; 61(2): 020801. · Zbl 1146.74325 · doi:10.1115/1.2885134
[28] Rice, JR. Contained plastic deformation near cracks and notches under longitudinal shear. Int J Fract 1966; 2(2): 426-447. · doi:10.1007/BF00183821
[29] Rice, J. Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear. J Appl Mech 1967; 34: 287. · doi:10.1115/1.3607681
[30] Hutchinson, J. Plastic stress and strain fields at a crack tip. J Mech Phys Solids 1968; 16(5): 337-342. · doi:10.1016/0022-5096(68)90021-5
[31] Rice, J, Rosengren, GF. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 1968; 16(1): 1-12. · Zbl 0166.20703 · doi:10.1016/0022-5096(68)90013-6
[32] Chao, YJ, Sutton, M, Wu, R. Determination of the asymptotic crack tip fields for a crack perpendicular to an interface between elastic-plastic materials. Acta Mech 1993; 100(1): 13-36. · Zbl 0783.73048 · doi:10.1007/BF01176860
[33] Romeo, A, Ballarini, R. The influence of elastic mismatch on the size of the plastic zone of a crack terminating at a brittle-ductile interface. Int J Fract 1994; 65(2): 183-196.
[34] Delfin, P, Gunnars, J, Stárhle, P. Effect of elastic mismatch on the growth of a crack initially terminated at an interface in elastic plastic bimaterials. Fatigue Fract Eng Mater Struct 1995; 18(10): 1201-1212. · doi:10.1111/j.1460-2695.1995.tb00848.x
[35] Yu, H, Wu, YL, Li, G. Plane strain asymptotic fields for cracks terminating at the interface between elastic and pressure-sensitive dilatant materials. Int J Fract 1997; 86(4): 343-360. · doi:10.1023/A:1007482316657
[36] Banerjee, A, Hancock, J. The role of constraint in the fields of a crack normal to the interface between elastically and plastically mismatched solids. J Mech Phys Solids 2004; 52(5): 1093-1108. · Zbl 1070.74043 · doi:10.1016/j.jmps.2003.09.001
[37] Li, J, Zhang, X. Elastic-plastic analysis of an arbitrarily-oriented mode III crack touching an interface. Int J Fract 1996; 80(4): 311-337. · doi:10.1007/BF00018510
[38] Ogden, RW. Non-linear elastic deformations. Courier Corporation, 1997.
[39] Wong, FS, Shield, RT. Large plane deformations of thin elastic sheets of neo-hookean material. Z angew Math Phys 1969; 20(2): 176-199. · Zbl 0179.55802 · doi:10.1007/BF01595559
[40] Knowles, JK, Sternberg, E. An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack. J Elasticity 1973; 3(2): 67-107. · doi:10.1007/BF00045816
[41] Knowles, JK, Sternberg, E. Finite-deformation analysis of the elastostatic field near the tip of a crack: Reconsideration and higher-order results. J Elasticity 1974; 4(3): 201-233. · Zbl 0286.73076 · doi:10.1007/BF00049265
[42] Knowles, JK. The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int J Fract 1977; 13(5): 611-639. · doi:10.1007/BF00017296
[43] Knowles, JK. On finite anti-plane shear for imcompressible elastic materials. J Austral Math Soc Ser B Appl Math 1976; 19(4): 400-415. · Zbl 0363.73045 · doi:10.1017/S0334270000001272
[44] Knowles, JK. A note on anti-plane shear for compressible materials in finite elastostatics. J Austral Math Soc Ser B Appl Math 1977; 20(01): 1-7. · Zbl 0363.73044 · doi:10.1017/S0334270000001399
[45] Horgan, C. Anti-plane shear deformations in linear and nonlinear solid mechanics. SIAM Rev 1995; 37(1): 53-81. · Zbl 0824.73018 · doi:10.1137/1037003
[46] Knowles, J, Sternberg, E. Large deformations near a tip of an interface-crack between two neo-Hookean sheets. J Elasticity 1983; 13(3): 257-293. · Zbl 0546.73079 · doi:10.1007/BF00042997
[47] Herrmann, J. An asymptotic analysis of finite deformations near the tip of an interface-crack. J Elasticity 1989; 21(3): 227-269. · Zbl 0696.73024 · doi:10.1007/BF00045779
[48] Herrmann, J. An asymptotic analysis of finite deformations near the tip of an interface-crack: Part ii. J Elasticity 1992; 29(3): 203-241. · Zbl 0766.73030 · doi:10.1007/BF00041204
[49] Knauss, W. An observation of crack propagation in anti-plane shear. Int J Fract 1970; 6(2): 183-187. · doi:10.1007/BF00189825
[50] Ravichandran, G, Knauss, W. A finite elastostatic analysis of bimaterial interface cracks. Int J Fract 1989; 39(1-3): 235-253. · doi:10.1007/BF00047452
[51] Gao, Y, Shi, Z. Large strain field near an interface crack tip. Int J Fract 1994; 69(3): 269-279. · doi:10.1007/BF00034766
[52] Geubelle, PH, Knauss, WG. Finite strains at the tip of a crack in a sheet of hyperelastic material: I. Homogeneous case. J Elasticity 1994; 35(1): 61-98. · Zbl 0818.73052 · doi:10.1007/BF00115539
[53] Geubelle, PH, Knauss, WG. Finite strains at the tip of a crack in a sheet of hyperelastic material: II. Special bimaterial cases. Journal of Elasticity 1994; 35(1): 99-137. · Zbl 0818.73052 · doi:10.1007/BF00115540
[54] Geubelle, PH. Finite deformation effects in homogeneous and interfacial fracture. Int J Solids Struct 1995; 32(6-7): 1003-1016. · Zbl 0875.73188 · doi:10.1016/0020-7683(94)00174-U
[55] Ru, C. Finite deformations at the vertex of a bi-material wedge. Int J Fract 1997; 84(4): 325-358. · doi:10.1023/A:1007357821832
[56] Ru, C. On complex-variable formulation for finite plane elastostatics of harmonic materials. Acta Mech 2002; 156(3): 219-234. · Zbl 1075.74017 · doi:10.1007/BF01176757
[57] Krishnan, V, Hui, CY. Finite strain stress fields near the tip of an interface crack between a soft incompressible elastic material and a rigid substrate. Eur Phys J E: Soft Matter Biol Phys 2009; 29(1): 61-72. · doi:10.1140/epje/i2009-10452-4
[58] Lengyel, T, Long, R, Schiavone, P. Effect of interfacial slippage on the near-tip fields of an interface crack between a soft elastomer and a rigid substrate. Proc R Soc A 2014; 470: 20140497. · doi:10.1098/rspa.2014.0497
[59] Gao, YC, Jin, M, Dui, GS. Stresses, singularities, and a complementary energy principle for large strain elasticity. Appl Mech Rev 2008; 61(3): 030801. · Zbl 1146.74307 · doi:10.1115/1.2909715
[60] Long, R, Hui, CY. Crack tip fields in soft elastic solids subjected to large quasi-static deformation—a review. Extreme Mech Lett 2015; 4: 131-155. · doi:10.1016/j.eml.2015.06.002
[61] Shanyi, D, Zhifei, S, Linzhi, W. A transverse crack tip field in bimaterial. Acta Mech Sin 1994; 10(3): 267-272. · doi:10.1007/BF02487615
[62] Ru, CQ. Finite strain singular field near the tip of a crack terminating at a material interface. Math Mech Solids 1997; 2(1): 49-73. · Zbl 1001.74568
[63] Boyce, MC, Arruda, EM. Constitutive models of rubber elasticity: a review. Rubber Chem Technol 2000; 73(3): 504-523. · doi:10.5254/1.3547602
[64] Kondrat’ev, VA. Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskovskogo Mat Obsh 1967; 16: 209-292. · Zbl 0162.16301
[65] Costabel, M, Stephan, E. Curvature terms in the asymptotic expansions for solutions of boundary integral equations on curved polygons. Techn. Hochsch., Fachbereich Mathematik, 1982. · Zbl 0538.35022
[66] Yosibash, Z. Singularities in elliptic boundary value problems and elasticity and their connection with failure initiation ( Interdisciplinary Applied Mathematics, vol. 37). Springer Science & Business Media, 2011. · Zbl 1244.74001
[67] Li, ZC, Lu, TT. Singularities and treatments of elliptic boundary value problems. Math Comput Modell 2000; 31(8-9): 97-145. · Zbl 1042.35524 · doi:10.1016/S0895-7177(00)00062-5
[68] Bogy, DB. On the problem of edge-bonded elastic quarter-planes loaded at the boundary. Int J Solids Struct 1970; 6(9): 1287-1313. · Zbl 0202.25001 · doi:10.1016/0020-7683(70)90104-6
[69] Dempsey, JP, Sinclair, GB. On the stress singularities in the plane elasticity of the composite wedge. J Elasticity 1979; 9(4): 373-391. · Zbl 0426.73021 · doi:10.1007/BF00044615
[70] Matlab R2012a User Guide . The Mathworks Inc., 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.