×

A revisit to the atomic decomposition of weighted Hardy spaces. (English) Zbl 1524.42042

Authors’ summary: The purpose of this paper is to present a new atomic decomposition for a dense class of weighted Hardy spaces \(H^p_w(\mathbb{R}^n)\) via the discrete Calderón-type reproducing formula and the weighted Littlewood-Paley-Stein theory, where \(w\in A_\infty\) is a Muckenhoupt’s weight and \(0<p<\infty\). Our results can recover and improve the known ones in the literature by avoiding using the maximal function characterization and the Calderón-Zygmund decomposition. Moreover, we give a new proof of the weighted Hardy spaces estimates for generalized Calderón-Zygmund operators in terms of the atomic decomposition and the vector-valued singular operator theory. Although the theory of \(H^p_w(\mathbb{R}^n)\) is well known, we give new and simpler proofs, which in turn are amenable to utilization in general and nonclassical settings.

MSC:

42B30 \(H^p\)-spaces
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI

References:

[1] J. Alvarez and M. Milman, \(H^p\) continuity properties of Calderón-Zygmund-type operators, J. Math. Anal. Appl., 118 (1986), 63-79. · Zbl 0596.42006
[2] K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math., 69 (1980), 19-31. · Zbl 0448.42016
[3] W-G. Chen, Y-S. Han and C-X. Miao, A note on the boundedness of Calderón- Zygmund operators on Hardy spaces, J. Math. Anal. Appl., 310 (2005), 57- 67. · Zbl 1077.42009
[4] R. R. Coifman, A real variable characterization of \(H^p\), Studia Math., 51 (1974), 269- 274. · Zbl 0289.46037
[5] D. Cruz-Uribe, K. Moen and H. V. Nguyen, A new approach to norm inequalities on weighted and variable Hardy spaces, Ann. Acad. Sci. Fenn. Math., 45 (2020), 175-198. · Zbl 1445.42013
[6] D. Cruz-Uribe, K. Moen and H. V. Nguyen, The boundedness of multilinear Calderón- Zygmund operators on weighted and variable Hardy spaces, Publ. Mat., 63 (2019), 679-713. · Zbl 1427.42024
[7] D. Cruz-Uribe and L. Wang, Variable Hardy spaces, Indiana Univ. Math. J., 63 (2014), 447-493. · Zbl 1311.42053
[8] D-G. Deng and Y-S. Han, Harmonic analysis on spaces of homogeneous type, Lecture Notes in Mathematics, vol. 1966, Springer-Verlag (Berlin, 2009). · Zbl 1158.43002
[9] Y. Ding, Y-S. Han, G-Z. Lu and X-F. Wu, Boundedness of singular integrals on multiparameter weighted Hardy spaces \(H^p_w(\mathbb R^m\times\mathbb R^n)\), Potential Anal., 37 (2012), 31-56. · Zbl 1271.42017
[10] C. Fefferman and E. Stein, \(H^p\) spaces of several variables, Acta Math., 129 (1972), 137-193. · Zbl 0257.46078
[11] J. Garcia-Cuerva, Weighted \(H^p\) spaces, Dissertationes Math. (Rozprawy Mat.), 162 (1979), 63 pp. · Zbl 0434.42023
[12] Y-S. Han, Calderón-type reproducing formula and the \(T_b\) theorem. Rev. Mat. Iberoam., 10 (1994), 51-91. · Zbl 0797.42009
[13] Y-S. Han, M-Y. Lee and C-C. Lin, Atomic decomposition and boundedness of operators on weighted Hardy spaces, Canad. Math. Bull., 55 (2012), 303-314. · Zbl 1271.42030
[14] Y-S. Han, D. Müller and D-C. Yang, Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr., 279 (2006), 1505-1537. · Zbl 1179.42016
[15] Y-S. Han and D-C. Yang, \(H^p\) boundedness of Calderón-Zygmund operators on product spaces, Math. Z., 249 (2005), 869-881. · Zbl 1059.42008
[16] J. Hart and L. Oliveira, Hardy space estimates for limited ranges of Muckenhoupt weights, Adv. Math., 313 (2017), 803-838. · Zbl 1372.42009
[17] R. H. Latter, A characterization of \(H^p(\mathbb R^n)\) in terms of atoms, Studia Math., 62 (1978), 93-101. · Zbl 0398.42017
[18] F-H. Liao, Z-Y. Li, Hardy space estimates for bi-parameter Littlewood-Paley square functions, Front. Math. China, 15 (2020), 333-349. · Zbl 1439.42019
[19] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262 (2012), 3665-3748. · Zbl 1244.42012
[20] P. Rocha, On the atomic and molecular decomposition of weighted Hardy spaces, Rev. Un. Mat. Argentina, 61 (2020), 229-247. · Zbl 1467.42034
[21] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of \(H^p\)-spaces, Acta Math., 103 (1960), 25-62. · Zbl 0097.28501
[22] Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory, 77 (2013), 123-148. · Zbl 1293.42025
[23] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag (Berlin, 1989). · Zbl 0676.42021
[24] J. O. Strömberg and R. L. Wheeden, Relations between \(H^p_u\) and \(L^p_u\) with polynomial weights, Trans. Amer. Math. Soc., 270 (1982), 439-467. · Zbl 0491.42017
[25] J. Tan, Atomic decompositions of localized Hardy spaces with variable exponents and applications, J. Geom. Anal., 29 (2019), 799-827. · Zbl 1407.42012
[26] J. Tan, Atomic decomposition of variable Hardy spaces via Littlewood-Paley-Stein theory, Ann. Funct. Anal., 9 (2018), 87-100. · Zbl 1393.42023
[27] J. Tan, Weighted Hardy and Carleson measure spaces estimates for fractional integrations, Publ. Math. Debrecen, 98 (2021), 313-330. · Zbl 1474.42083
[28] J. Tan, Weighted variable Hardy spaces associated with para-accretive functions and boundedness of Calder’on-Zygmund operators, J. Geom. Anal., doi.org/ 10.1007/s12220-022-01121-9 (2022). · Zbl 1505.42028
[29] F. Weisz, Boundedness of operators on Hardy spaces, Acta Sci. Math. (Szeged), 78 (2012), 541-557. · Zbl 1299.42077
[30] X-F. Wu, Atomic decomposition characterizations of weighted multiparameter Hardy spaces. Front. Math. China, 7 (2012), 1195-1212. · Zbl 1278.42028
[31] D-C. Yang and Y. Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx., 29 (2009), 207-218. · Zbl 1283.42029
[32] K. Zhao and Y-S. Han, Boundedness of operators on Hardy spaces, Taiwanese J. Math., 14 (2010), 319-327. · Zbl 1209.42013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.