×

“The Sierpinski gasket minus its bottom line” as a tree of Sierpinski gaskets. (English) Zbl 1542.31004

This paper focuses primarily on a subset of the Sierpinski gasket, if the three corners of the Sierpinski gasket \(K\) are \((0,0)\), \((1,0)\), and \(\left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right)\) the authors consider the subset of the gasket where the line segment \(I\) from \((0,0)\) to \((1,0)\) is removed. The main observation is that \(K \setminus I\) is a “tree of Sierpinski gaskets”.
Firstly, the intrinsic metric geometry of \(K \setminus I\) is identical to \(K\) except when close to \(I\). It is shown first that the completion of \(K \setminus I\) with the shortest path metric is homeomorphic to \(K \setminus I \cup \Sigma_T = K\) where \(\Sigma_T\) is a Cantor set and the metric is the usual metric on \(K\) and a \(2\)-adic metric on CS (Theorem 2.15. This is proven by decomposing \(K \setminus I\) into a tree \(T\) of standard Sierpinski gaskets \(K_{\omega}\) and considering when the shortest path between two points would have to venture close to \(I\) or stays away from \(I\).
The next step is to consider the existence of a resistance form on \(K \setminus I\). Again because of the “tree of gaskets” geometry a resistance form can be constructed and domain identified on \(K \setminus I\) as restriction of the standard resistance form on \(K\). Under this construction a resistance form does indeed exist and it generates a resistance metric on \(K \setminus I\). The completion of \(K \setminus I\) under the resistance metric is homeomorphic to the completion of \(K \setminus I\) under the shortest path metric (Theorem 4.5).
The last main result of the paper is an equality between two resistance forms on \(K \setminus I\). The first resistance form is the restriction of the standard resistance \(\mathcal{E}\) form on a Sierpinski gasket. The second resistance form \(\tilde{\mathcal{E}}\) is a resistance form that is approximated by considering functions on graphs approximating \(K \setminus I\) (the same as the graph approximations to \(K\) but with the bottom line removed). Theorem 5.4 provides that when \(f\) on \(K\) in the domain of \(\mathcal{E}\) is “lifted” by \(\rho: K \setminus I \cup CS \rightarrow K\) to a function on \(K \setminus I \cup CS\) then \(\mathcal{E}(f,f) = \tilde{\mathcal{E}}(f \circ \rho, f \circ \rho)\). Thus it can be said that from the resistance perspective \(K\) and \(K \setminus I\) are very closely related.

MSC:

31E05 Potential theory on fractals and metric spaces
31C25 Dirichlet forms
28A80 Fractals
60J45 Probabilistic potential theory

References:

[1] Barlow, MT; Perkins, EA, Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields, 79, 542-624 (1988) · doi:10.1007/BF00318785
[2] Fukushima, M.; Oshima, Y.; Takeda, M., Dirichlet forms and symmetric Markov processes, de Gruyter studies in Math (1994), Berlin: de Gruyter, Berlin · Zbl 0838.31001 · doi:10.1515/9783110889741
[3] Goldstein, S.: Random walks and diffusions on fractals, Percolation theory and ergodic theory of infinite particle systems (H. Kesten, ed.), IMA Math. Appl., vol. 8, Springer, pp. 121-129 (1987)
[4] Grigor’yan, A.; Hu, J.; Lau, K-S, Estimates of heat kernels for non-local regular Dirichlet forms, Trans. Amer. Math. Soc., 366, 6397-6441 (2014) · Zbl 1304.47058 · doi:10.1090/S0002-9947-2014-06034-0
[5] Guo, Z.; Kogan, R.; Qui, H.; Strichartz, RS, Boundary value problems for a family of domains in the Sierpinski gasket, Illinois J. Math., 58, 497-519 (2014) · Zbl 1323.28013 · doi:10.1215/ijm/1436275495
[6] Jonsson, A., A trace theorem for the Dirichlet form on the Sierpinski gasket, Math. Z., 250, 599-609 (2005) · Zbl 1073.60078 · doi:10.1007/s00209-005-0767-z
[7] Kajino, N., Analysis and geometry of the measurable Riemannian structure on the Sierpinski gasket, Contemporary Math., 600, 91-133 (2013) · Zbl 1325.28001 · doi:10.1090/conm/600/11932
[8] Kigami, J., A harmonic calculus on the Sierpinski spaces, Japan, J. Appl. Math., 6, 259-290 (1989) · Zbl 0686.31003
[9] Kigami, J.: Analysis on Fractals, Cambridge Tracts in Math. vol. 143, Cambridge University Press, (2001) · Zbl 0998.28004
[10] Kigami, J., Harmonic analysis for resistance forms, J. Funct. Anal., 204, 399-444 (2003) · Zbl 1039.31014 · doi:10.1016/S0022-1236(02)00149-0
[11] Kigami, J., Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees, Adv. Math., 225, 2674-2730 (2010) · Zbl 1234.60077 · doi:10.1016/j.aim.2010.04.029
[12] Kigami, J., Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Am. Math. Soc., 216, 1015 (2012) · Zbl 1246.60099
[13] Kusuoka, S.: A diffusion process on a fractal, Probabilistic Methods on Mathematical Physics, Proc. of Taniguchi International Symp. (Katata & Kyoto, 1985) (Tokyo) (K. Ito and N. Ikeda, eds.), Kinokuniya, pp. 251-274 (1987) · Zbl 0645.60081
[14] Kusuoka, S., Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci., 25, 659-680 (1989) · Zbl 0694.60071 · doi:10.2977/prims/1195173187
[15] Owen, J.; Strichartz, RS, Boundary value problems for harmonic functions on a domain in the sierpinski gasket, Indiana Univ. Math. J., 61, 319-335 (2012) · Zbl 1272.28010 · doi:10.1512/iumj.2012.61.4539
[16] Strichartz, RS, Some properties of Laplacians on fractals, J. Funct. Anal., 164, 181-208 (1999) · Zbl 0994.35044 · doi:10.1006/jfan.1999.3400
[17] Takahashi, K.: Trace of the standard resistance form on the Sierpinski gasket and the structure of harmonic functions, Master thesis, Kyoto University (2009) (in Japanese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.