×

A conjugate heat transfer analysis of a triangular finned annulus based on DG-FEM. (English) Zbl 1427.76130

Summary: A DG-FEM based numerical investigation has been performed to explore the influence of the various geometric configurations on the thermal performance of the conjugate heat transfer analysis in the triangular finned double pipe heat exchanger. The computed results dictate that Nusselt number in general rises with values of the conductivity ratio of solid and fluid, for the specific configuration parameters considered here. However, the performance of these parameters shows strong influence on the conductivity ratio. Consequently, these parameters must be selected in consideration of the thermal resistance, for better design of heat exchanger.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
80A20 Heat and mass transfer, heat flow (MSC2010)
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
Full Text: DOI

References:

[1] Soliman, H. M., The effect of fin conductance on laminar heat transfer characteristics of internally finned tubes, The Canadian Journal of Chemical Engineering, 59, 2, 251-256 (1981) · doi:10.1002/cjce.5450590218
[2] Krishan, B., On conjugated heat transfer in fully developed flow, International Journal of Heat and Mass Transfer, 25, 2, 288-289 (1982) · doi:10.1016/0017-9310(82)90015-1
[3] Barozzi, G. S.; Pagliarini, G., A method to solwe conjugate heat transfer problems: The case of fully developed laminar flow in a pipe, Journal of Heat Transfer, 107, 1, 77-83 (1985) · doi:10.1115/1.3247406
[4] Sakakibara, M.; Mori, S.; Tanimoto, A., Conjugate heat transfer with laminar flow in an annulus, The Canadian Journal of Chemical Engineering, 65, 4, 541-549 (1987) · doi:10.1002/cjce.5450650403
[5] Tao, W.-Q., Conjugated laminar forced convective heat transfer from internally finned tubes, Journal of Heat Transfer, 109, 3, 791-795 (1987) · doi:10.1115/1.3248161
[6] Pagliarini, G., Effects of axial conduction in the wall and the fluid on conjugate heat transfer in thick-walled circular tubes, International Communications in Heat and Mass Transfer, 15, 5, 581-591 (1988) · doi:10.1016/0735-1933(88)90049-8
[7] Agrawal, A. K.; Sengupta, S., Laminar flow and heat transfer in a finned tube annulus, International Journal of Heat and Fluid Flow, 11, 1, 54-59 (1990) · doi:10.1016/0142-727X(90)90025-7
[8] Kettner, I. J.; Degani, D.; Gutfinger, C., Numerical study of laminar heat transfer in internally finned tubes, Numerical Heat Transfer, Part A: Applications, 20, 2, 159-180 (1991) · doi:10.1080/10407789108944815
[9] Suryanarayana, N. V.; Apparao, T. V. V. R., Heat transfer augmentation and pumping power in double-pipe heat exchangers, Experimental Thermal and Fluid Science, 9, 4, 436-444 (1994) · doi:10.1016/0894-1777(94)90021-3
[10] Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.; Mitra, N. K., Conjugate heat transfer of a finned tube part b: Heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators, Numerical Heat Transfer, Part A: Applications, 28, 2, 147-155 (1995) · doi:10.1080/10407789508913738
[11] Fiebig, M.; Grosse-Gorgemann, A.; Chen, Y.; Mitra, N. K., Conjugate heat transfer of a finned tube part a: Heat transfer behavior and occurrence of heat transfer reversal, Numerical Heat Transfer, Part A: Applications, 28, 2, 133-146 (1995) · doi:10.1080/10407789508913737
[12] Taborek, J., Double-pipe and multitube heat exchangers with plain and longitudinal finned tubes, Heat Transfer Engineering, 18, 2, 34-45 (1997) · doi:10.1080/01457639708939894
[13] Syed, K. S., Simulation of fluid flow through a double-pipe heat exchanger [Ph.D. thesis] (1997), Department of Mathematics University of Bradford
[14] Dorfman, A.; Renner, Z., Conjugate problems in convective heat transfer: review, Mathematical Problems in Engineering, 2009 (2009) · Zbl 1181.80004 · doi:10.1155/2009/927350
[15] Syed, K. S.; Ishaq, M.; Bakhsh, M., Laminar convection in the annulus of a double-pipe with triangular fins, Computers & Fluids, 44, 1, 43-55 (2011) · Zbl 1271.76318 · doi:10.1016/j.compfluid.2010.11.026
[16] Iqbal, Z.; Syed, K. S.; Ishaq, M., Optimal convective heat transfer in double pipe with parabolic fins, International Journal of Heat and Mass Transfer, 54, 25-26, 5415-5426 (2011) · Zbl 1231.80017 · doi:10.1016/j.ijheatmasstransfer.2011.08.001
[17] Ishaq, M.; Syed, K. S.; Iqbal, Z.; Hassan, A.; Ali, A., DG-FEM based simulation of laminar convection in an annulus with triangular fins of different heights, International Journal of Thermal Sciences, 72, 125-146 (2013) · doi:10.1016/j.ijthermalsci.2013.04.022
[18] Iqbal, Z.; Syed, K. S.; Ishaq, M., Optimal fin shape in finned double pipe with fully developed laminar flow, Applied Thermal Engineering, 51, 1-2, 1202-1223 (2013) · doi:10.1016/j.applthermaleng.2012.10.036
[19] Salman, S. D.; Kadhum, A. A. H.; Takriff, M. S.; Mohamad, A. B., CFD simulation of heat transfer and friction factor augmentation in a circular tube fitted with elliptic-cut twisted tape inserts, Mathematical Problems in Engineering, 2013 (2013) · doi:10.1155/2013/163839
[20] Muhammad, I., Fem Based Numerical Solutions of Incompressible Flows in a Finned Double Pipe [Ph.D. thesis] (2013), Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University Multan Pakistan
[21] Iqbal, Z.; Ishaq, M.; Syed, K. S., Optimization of laminar convection on the shell-side of double pipe with triangular fins, Arabian Journal for Science and Engineering, 39, 3, 2307-2321 (2014) · Zbl 1391.76336 · doi:10.1007/s13369-013-0751-6
[22] Syed, K. S.; Ishaq, M.; Iqbal, Z.; Hassan, A., Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness, Energy Conversion and Management, 98, 69-80 (2015) · doi:10.1016/j.enconman.2015.03.038
[23] Ahmad, W.; Syed, K. S.; Ishaq, M.; Hassan, A.; Iqbal, Z., Numerical study of conjugate heat transfer in a double-pipe with exponential fins using DGFEM, Applied Thermal Engineering, 111, 1184-1201 (2017) · doi:10.1016/j.applthermaleng.2016.09.171
[24] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods Algorithms, Analysis and Applications (2008), New York, NY, USA: Springer, New York, NY, USA · Zbl 1134.65068 · doi:10.1007/978-0-387-72067-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.