×

CNOK: a C++ Glauber model code for single-nucleon knockout reactions. (English) Zbl 1525.81039

Summary: A C++ program package was developed to calculate parallel momentum distributions (including the stripping mechanism and the diffractive dissociation mechanism) of the heavy residue (core) in single-nucleon knockout reactions induced by intermediate-energy (around and more than tens of MeV per nucleon) beams of stable and radioactive atomic nuclei. The program implements the Glauber reaction model that is based on the eikonal approximation and the sudden approximation when dealing with the scattering process, and uses a \(t\)-\(\rho\)-\(\rho\) method to build the projectile-target scattering optical potential, where the nucleonic densities of the core and the target are needed as input. The radial wavefunction of the valence nucleon is solved by a built-in bound-wave solver driven by a globally convergent search engine for optimized potential parameters of the valence nucleon to reproduce user-specified separation energies and root-mean-square (rms) radii of the valence nucleon. The YAML file format is adopted to facilitate user input. The program is expected to especially serve the interpretation of data analysis results of single-nucleon knockout from radioactive ion beams (RIBs), where the experimental practitioners may be more conversant with C++.

MSC:

81U90 Particle decays
81V35 Nuclear physics
62F40 Bootstrap, jackknife and other resampling methods
47A10 Spectrum, resolvent
14G12 Hasse principle, weak and strong approximation, Brauer-Manin obstruction
81U30 Dispersion theory, dispersion relations arising in quantum theory
78A45 Diffraction, scattering
81V55 Molecular physics
81-08 Computational methods for problems pertaining to quantum theory

Software:

CNOK
Full Text: DOI

References:

[1] Hansen, P. G.; Tostevin, J. A., Annu. Rev. Nucl. Part. Sci., 53, 219-261 (2003)
[2] Mayer, M. G., Phys. Rev., 75, 1969-1970 (1949)
[3] Tanihata, I., Phys. Rev. Lett., 55, 2676-2679 (1985)
[4] Steppenbeck, D., Nature, 502, 207-210 (2013)
[5] Aumann, T., Prog. Part. Nucl. Phys., 118, Article 103847 pp. (2021)
[6] Brown, B. A., Phys. Rev. C, 65 (2002), 061601R
[7] Gade, A., Phys. Rev. C, 77, Article 044306 pp. (2008)
[8] Tostevin, J. A.; Gade, A., Phys. Rev. C, 90, Article 057602 pp. (2014)
[9] Tostevin, J. A.; Gade, A., Phys. Rev. C, 103, Article 054610 pp. (2021)
[10] Wen, C., Chin. Phys. C, 41, Article 054104 pp. (2017)
[11] Dieperink, A. E.L.; de Forest, T., Phys. Rev. C, 10, 543-549 (1974)
[12] Bertulani, C. A.; Danielewicz, P., Introduction to Nuclear Reactions (2004), Institute of Physics Publishing: Institute of Physics Publishing Bristol and Philadelphia
[13] Glauber, R. J., Lectures in Theoretical Physics, vol. 1, 315 (1959), Interscience: Interscience New York · Zbl 0095.38301
[14] Bertulani, C. A.; Gade, A., Comput. Phys. Commun., 175, 372-380 (2006)
[15] Abu-Ibrahim, B., Comput. Phys. Commun., 151, 369-386 (2003)
[16] Terry, J. R., Phys. Rev. C, 69, Article 054306 pp. (2004)
[17] Tostevin, J. A., Phys. Rev. C, 66, Article 024607 pp. (2002)
[18] Press, W. H., Numerical Recipes in C: The Art of Scientific Computing (1992), Cambridge University Press · Zbl 0845.65001
[19] Bazin, D., Phys. Rev. Lett., 102, Article 232501 pp. (2009)
[20] Hussein, M. S.; McVoy, K. W., Nucl. Phys. A, 445, 124-139 (1985)
[21] Tostevin, J. A., Nucl. Phys. A, 682, 320c-331c (2001)
[22] Bertulani, C. A.; Hansen, P. G., Phys. Rev. C, 70, Article 034609 pp. (2004)
[23] Ray, L., Phys. Rev. C, 20, 1857-1872 (1979)
[24] Charagi, S. K.; Gupta, S. K., Phys. Rev. C, 41, 1610-1618 (1990)
[25] Hussein, R. R.M. S.; Bertulani, C., Phys. Rep., 201, 279 (1991)
[26] Lenzi, S. M.; Vitturi, A.; Zardi, F., Phys. Rev. C, 40, 2114 (1989)
[27] Horiuchi, W., Phys. Rev. C, 75, Article 044607 pp. (2007)
[28] Berghe, G. V.; Fack, V.; de Meyer, H. E., J. Comput. Appl. Math., 28, 391-401 (1988) · Zbl 0694.65033
[29] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1970), Dover Publications · Zbl 0515.33001
[30] Huang, W. J., Chin. Phys. C, 45, Article 030002 pp. (2021)
[31] Huang, W. J., Chin. Phys. C, 45, Article 030003 pp. (2021)
[32] Sun, Y. Z., Phys. Rev. C, 104, Article 014310 pp. (2021)
[33] (2022), A YAML parser and emitter in C++
[34] (2022), A modern, C++-native, test framework for unit-tests, TDD and BDD
[35] (2022), ROOT: analyzing petabytes of data, scientifically
[36] Sun, Y. Z., Nucl. Instrum. Methods Phys. Res., Sect. A, 927, 390-395 (2019)
[37] Zhao, Y. X., Phys. Rev. C, 100, Article 044609 pp. (2019)
[38] Y.Z. Sun, S.T. Wang, Z.Y. Sun, et al., The experimental momentum distribution of the^15C fragment for one-neutron removal from^16C at 239 MeV/nucleon, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.