×

A constrained differential evolution algorithm for calculation of two-phase equilibria at given volume, temperature and moles. (English) Zbl 07923413

Summary: A variety of strategies including two types of direct solution methods based on Newton’s method and indirect solution methods based on thermodynamic principles have been developed, which can find satisfactory solutions for the phase equilibrium calculation problem at given volume, temperature and moles (NVT-flash). However, these methods are sensitive to the initial values and depend on the objective function’s derivative during calculation. To resolve these deficiencies, a constrained differential evolution algorithm (abbreviated as CDE) for calculating two-phase equilibria at given volume, temperature, and moles is presented in this paper. The total Helmholtz free energy is regarded as the objective function, and the moles vector and volume of a certain phase are taken as the decision variables. This paper deals with the constraints of the NVT-flash problem by using direct search method and exterior point method. The results of the investigations on pure substance, binary and ternary mixtures are in agreement with the published data, which proves the effectiveness in solving the NVT-flash problem and the energy attenuation characteristic of the algorithm. The proposed algorithm represents the first successful attempt to apply the meta-heuristic optimization algorithm to solve the phase equilibrium computation under NVT-flash, and it shows the promising application prospect of meta-heuristic optimization algorithms for solving the phase equilibrium calculation problems.

MSC:

90Cxx Mathematical programming
65Nxx Numerical methods for partial differential equations, boundary value problems
76Txx Multiphase and multicomponent flows
Full Text: DOI

References:

[1] T. Zhang, Y. Li, S. Sun, Phase equilibrium calculations in shale gas reservoirs, 2019.
[2] Li, Y.; Zhang, T.; Sun, S., Acceleration of the nvt flash calculation for multicomponent mixtures using deep neural network models, Ind. Eng. Chem. Res., 58, 12312-12322, 2019
[3] Kou, J.; Sun, S.; Wang, X., An energy stable evolution method for simulating two-phase equilibria of multi-component fluids at constant moles, volume and temperature, Comput. Geosci., 20, 283-295, 2016 · Zbl 1392.86012
[4] Mikyška, J.; Firoozabadi, A., Investigation of mixture stability at given volume, temperature, and number of moles, Fluid Phase Equilib., 321, 1-9, 2012
[5] Michelsen, M. L., State function based flash specifications, Fluid Phase Equilib., 158, 617-626, 1999
[6] Nichita, D. V., New unconstrained minimization methods for robust flash calculations at temperature, volume and moles specifications, Fluid Phase Equilib., 466, 31-47, 2018
[7] Michelsen, M. L., The isothermal flash problem. Part i. Stability, Fluid Phase Equilib., 9, 1-19, 1982
[8] Michelsen, M. L., The isothermal flash problem. Part ii. Phase-split calculation, Fluid Phase Equilib., 9, 21-40, 1982
[9] Michelsen, M. L.; Mollerup, J., Thermodynamic Modelling: Fundamentals and Computational Aspects, 2004, Tie-Line Publications
[10] Mikyška, J.; Firoozabadi, A., A new thermodynamic function for phase-splitting at constant temperature, moles, and volume, AIChE J., 57, 1897-1904, 2011
[11] Polívka, O.; Mikyška, J., Compositional modeling in porous media using constant volume flash and flux computation without the need for phase identification, J. Comput. Phys., 272, 149-169, 2014 · Zbl 1349.76825
[12] Jindrová, T.; Mikyška, J., Fast and robust algorithm for calculation of two-phase equilibria at given volume, temperature, and moles, Fluid Phase Equilib., 353, 101-114, 2013
[13] Fontalba, F.; Richon, D.; Renon, H., Simultaneous determination of vapor-liquid equilibria and saturated densities up to 45 mpa and 433 k, Rev. Sci. Instrum., 55, 944-951, 1984
[14] Fischer, K.; Wilken, M., Experimental determination of oxygen and nitrogen solubility in organic solvents up to 10 mpa at temperatures between 298 k and 398 k, J. Chem. Thermodyn., 33, 1285-1308, 2001
[15] Roedder, E.; Bodnar, R., Geologic pressure determinations from fluid inclusion studies, Annu. Rev. Earth Planet. Sci., 8, 263, 1980
[16] Liu, D.; Xiao, X.; Mi, J.; Li, X.; Shen, J.; Song, Z.; Peng, P., Determination of trapping pressure and temperature of petroleum inclusions using pvt simulation software-a case study of lower ordovician carbonates from the Lunnan low uplift, Tarim basin, Mar. Pet. Geol., 20, 29-43, 2003
[17] Jindrová, T.; Mikyška, J., General algorithm for multiphase equilibria calculation at given volume, temperature, and moles, Fluid Phase Equilib., 393, 7-25, 2015
[18] Lu, C.; Jin, Z.; Li, H. A., A two-phase flash algorithm with the consideration of capillary pressure at specified mole numbers, volume and temperature, Fluid Phase Equilib., 485, 67-82, 2019
[19] Achour, S. H.; Okuno, R., Two-phase flash for tight porous media by minimization of the Helmholtz free energy, Fluid Phase Equilib., 534, Article 112960 pp., 2021
[20] Vidal, A.; Koukouvinis, P.; Gavaises, M., Vapor-liquid equilibrium calculations at specified composition, density and temperature with the perturbed chain statistical associating fluid theory (pc-saft) equation of state, Fluid Phase Equilib., 521, Article 112661 pp., 2020
[21] Nichita, D. V.; De-Hemptinne, J.-C.; Gomez, S., Isochoric phase stability testing for hydrocarbon mixtures, Pet. Sci. Technol., 27, 2177-2191, 2009
[22] Nichita, D. V., Fast and robust phase stability testing at isothermal-isochoric conditions, Fluid Phase Equilib., 447, 107-124, 2017
[23] Castier, M., Helmholtz function-based global phase stability test and its link to the isothermal-isochoric flash problem, Fluid Phase Equilib., 379, 104-111, 2014
[24] Kou, J.; Sun, S., A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model, Fluid Phase Equilib., 456, 7-24, 2018
[25] Li, Y.; Kou, J.; Sun, S., Thermodynamically stable two-phase equilibrium calculation of hydrocarbon mixtures with capillary pressure, Ind. Eng. Chem. Res., 57, 17276-17288, 2018
[26] Kou, J.; Sun, S.; Wang, X., A novel energy factorization approach for the diffuse-interface model with Peng-Robinson equation of state, SIAM J. Sci. Comput., 42, B30-B56, 2020 · Zbl 1432.65169
[27] Feng, X.; Chen, M.-H.; Wu, Y.; Sun, S., A fully explicit and unconditionally energy-stable scheme for Peng-Robinson vt flash calculation based on dynamic modeling, J. Comput. Phys., 463, Article 111275 pp., 2022 · Zbl 07536774
[28] Price, K. V., Differential evolution: a fast and simple numerical optimizer, (Proceedings of North American Fuzzy Information Processing, 1996, IEEE), 524-527
[29] Storn, R., On the usage of differential evolution for function optimization, (Proceedings of North American Fuzzy Information Processing, 1996, Ieee), 519-523
[30] Storn, R.; Price, K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341-359, 1997 · Zbl 0888.90135
[31] Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A., Differential evolution: a review of more than two decades of research, Eng. Appl. Artif. Intell., 90, Article 103479 pp., 2020
[32] Koukouvinis, P.; Vidal-Roncero, A.; Rodriguez, C.; Gavaises, M.; Pickett, L., High pressure/high temperature multiphase simulations of dodecane injection to nitrogen: application on ecn spray-a, Fuel, 275, Article 117871 pp., 2020
[33] Vidal, A.; Kolovos, K.; Gold, M. R.; Pearson, R. J.; Koukouvinis, P.; Gavaises, M., Preferential cavitation and friction-induced heating of multi-component diesel fuel surrogates up to 450mpa, Int. J. Heat Mass Transf., 166, Article 120744 pp., 2021
[34] Geber, E. M.; Rodriguez Fernandez, C.; Karathanassis, I.; López-Pintor, D.; Manin, J.; Pickett, L. M.; Gavaises, M., A general predictive methodology for fuel-mixture properties up to supercritical conditions, Fluid Phase Equilib., 574, Article 113888 pp., 2023
[35] Vidal, A.; Rodriguez, C.; Koukouvinis, P.; Gavaises, M.; McHugh, M. A., Modelling of diesel fuel properties through its surrogates using perturbed-chain, statistical associating fluid theory, Int. J. Eng. Res., 21, 1118-1133, 2020
[36] Rokni, H. B.; Gupta, A.; Moore, J. D.; McHugh, M. A.; Bamgbade, B. A.; Gavaises, M., Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures, Fuel, 236, 1377-1390, 2019
[37] Rowane, A. J.; Gupta, A.; Gavaises, M.; McHugh, M. A., Experimental and modeling investigations of the phase behavior and densities of diesel+ nitrogen mixtures, Fuel, 265, Article 117027 pp., 2020
[38] Rowane, A. J.; Gavaises, M.; McHugh, M. A., Vapor-liquid equilibria and mixture densities for 2, 2, 4, 4, 6, 8, 8-heptamethylnonane+ n2 and n-hexadecane+ n2 binary mixtures up to 535 k and 135 mpa, Fluid Phase Equilib., 506, Article 112378 pp., 2020
[39] Rowane, A. J.; Mallepally, R. R.; Gavaises, M.; McHugh, M. A., Interfacial tension of isomers n-hexadecane and 2, 2, 4, 4, 6, 8, 8-heptamethylnonane with nitrogen at high pressures and temperatures, Ind. Eng. Chem. Res., 59, 9293-9299, 2020
[40] Hu, Z.; Xu, X.; Su, Q.; Zhu, H.; Guo, J., Grey prediction evolution algorithm for global optimization, Appl. Math. Model., 79, 145-160, 2020 · Zbl 1481.90314
[41] Xu, X.; Hu, Z.; Su, Q.; Li, Y.; Dai, J., Multivariable grey prediction evolution algorithm: a new metaheuristic, Appl. Soft Comput., 89, Article 106086 pp., 2020
[42] Hu, Z.; Gao, C.; Su, Q., A novel evolutionary algorithm based on even difference grey model, Expert Syst. Appl., 176, Article 114898 pp., 2021
[43] Xiang, X.; Su, Q.; Huang, G.; Hu, Z., A simplified non-equidistant grey prediction evolution algorithm for global optimization, Appl. Soft Comput., 125, Article 109081 pp., 2022
[44] Kennedy, J.; Eberhart, R., Particle swarm optimization, (Proceedings of ICNN’95-International Conference on Neural Networks, volume 4, 1995, IEEE), 1942-1948
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.