×

Effective population size in simple infectious disease models. (English) Zbl 1530.92286

Summary: Almost all models used in analysis of infectious disease outbreaks contain some notion of population size, usually taken as the census population size of the community in question. In many settings, however, the census population is not equivalent to the population likely to be exposed, for example if there are population structures, outbreak controls or other heterogeneities. Although these factors may be taken into account in the model: adding compartments to a compartmental model, variable mixing rates and so on, this makes fitting more challenging, especially if the population complexities are not fully known. In this work we consider the concept of effective population size in outbreak modelling, which we define as the size of the population involved in an outbreak, as an alternative to use of more complex models. Effective population size is an important quantity in genetics for estimation of genetic diversity loss in populations, but it has not been widely applied in epidemiology. Through simulation studies and application to data from outbreaks of COVID-19 in China, we find that simple SIR models with effective population size can provide a good fit to data which are not themselves simple or SIR.

MSC:

92D30 Epidemiology
91D20 Mathematical geography and demography

Software:

GitHub; Python; SciPy; Julia; R
Full Text: DOI

References:

[1] Anderson, RM; May, RM, Infectious diseases of humans: dynamics and control (1992), Oxford: Oxford University Press, Oxford
[2] Anderson, SC; Edwards, AM; Yerlanov, M., Quantifying the impact of COVID-19 control measures using a Bayesian model of physical distancing, PLoS Comput Biol (2020) · doi:10.1371/journal.pcbi.1008274
[3] Bezanson, J.; Edelman, A.; Karpinski, S., Julia: a fresh approach to numerical computing, SIAM Rev, 59, 1, 65-98 (2017) · Zbl 1356.68030 · doi:10.1137/141000671
[4] Brauer F (2008) Compartmental models in epidemiology. Math Epidemiol 1945:19-79. doi:10.1007/978-3-540-78911-6_2 · Zbl 1206.92023
[5] Brauer, F., Mathematical epidemiology: past, present, and future, Infect Dis Model, 2, 2, 113-127 (2017) · doi:10.1016/j.idm.2017.02.001
[6] Caley, P.; Philp, DJ; McCracken, K., Quantifying social distancing arising from pandemic influenza, J R Soc Interface, 5, 23, 631-639 (2008) · doi:10.1098/rsif.2007.1197
[7] Charlesworth, B., Effective population size and patterns of molecular evolution and variation, Nat Rev Genet, 10, 3, 195-205 (2009) · doi:10.1038/nrg2526
[8] China Data Lab, Harvard Dataverse (2020) China COVID-19 daily cases with basemap. doi:10.7910/DVN/MR5IJN
[9] Cope, RC; Ross, JV; Chilver, M., Characterising seasonal influenza epidemiology using primary care surveillance data, PLoS Comput Biol, 14, 8 (2018) · doi:10.1371/journal.pcbi.1006377
[10] Diekmann, O.; Heesterbeek, J.; Roberts, MG, The construction of next-generation matrices for compartmental epidemic models, J R Soc Interface, 7, 47, 873-885 (2010) · doi:10.1098/rsif.2009.0386
[11] Gibbs, H.; Liu, Y.; Pearson, CA, Changing travel patterns in China during the early stages of the COVID-19 pandemic, Nat Commun, 11, 1, 5012 (2020) · doi:10.1038/s41467-020-18783-0
[12] Hu, T.; Guan, WW; Zhu, X., Building an open resources repository for COVID-19 research, Data Inf Manag, 4, 3, 130-147 (2020) · doi:10.2478/dim-2020-0012
[13] Husemann, M.; Zachos, F.; Paxton, R., Effective population size in ecology and evolution, Heredity, 117, 4, 191-192 (2016) · doi:10.1038/hdy.2016.75
[14] Keeling, MJ; Rohani, P., Modeling infectious diseases in humans and animals (2011), Princeton: Princeton University Press, Princeton · Zbl 1279.92038 · doi:10.2307/j.ctvcm4gk0
[15] KhudaBukhsh, WR; Choi, B.; Kenah, E., Survival dynamical systems: individual-level survival analysis from population-level epidemic models, Interface Focus, 10, 1, 20190048 (2020) · doi:10.1098/rsfs.2019.0048
[16] Kliman, R.; Sheehy, B.; Schultz, J., Genetic drift and effective population size, Nat Educ, 1, 3, 3 (2008) · doi:10.1093/genetics/98.3.625
[17] Kucharski, AJ; Russell, TW; Diamond, C., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect Dis, 20, 5, 553-558 (2020) · doi:10.1016/S1473-3099(20)30144-4
[18] Lai, S.; Ruktanonchai, NW; Zhou, L., Effect of non-pharmaceutical interventions to contain COVID-19 in China, Nature, 585, 7825, 410-413 (2020) · doi:10.1038/s41586-020-2293-x
[19] Liu, Y.; Gayle, AA; Wilder-Smith, A., The reproductive number of COVID-19 is higher compared to SARS coronavirus, J Travel Med (2020) · doi:10.1093/jtm/taaa021
[20] R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/
[21] Stewart, GW, The efficient generation of random orthogonal matrices with an application to condition estimators, SIAM J Numer Anal, 17, 3, 403-409 (1980) · Zbl 0443.65027 · doi:10.1137/0717034
[22] Van Rossum, G.; Drake, FL Jr, Python tutorial (1995), The Netherlands: Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands
[23] Virtanen P, Gommers R, Oliphant TE et al (2020) Scipy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261-272. doi:10.1038/s41592-019-0686-2
[24] Wakeley JH (2009) Coalescent theory: an introduction · Zbl 1366.92001
[25] Wang, J.; Santiago, E.; Caballero, A., Prediction and estimation of effective population size, Heredity, 117, 4, 193-206 (2016) · doi:10.1038/hdy.2016.43
[26] Wright, S., Evolution in mendelian populations, Genetics, 16, 2, 97 (1931) · doi:10.1093/genetics/16.2.97
[27] Yerlanov M (2021) Suppporting code: effective population size in simple infectious disease models. https://github.com/Yemaye/effectivepopulation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.