×

Polynomial decay of correlations in linked-twist maps. (English) Zbl 1321.37007

The decay rate of correlations is an important characterization of the statistical properties of dynamical systems. More precisely, given a dynamical system \(T:X\to X\) preserving an invariant measure \(\mu\), the correlation of two functions \(\phi,\psi:X\to\mathbb{R}\), for each \(n\geq 0\), is defined by
\[ C_n(\phi,\psi,T,\mu)=\int_X \phi\circ T^n\cdot \psi d\mu-\int_X\phi d\mu \cdot \int_X \psi d\mu. \]
For example, the correlations of uniformly hyperbolic systems are known to have exponentially fast decay rate. It is not easy to determine the decay rates of general systems. The linked-twist maps can be viewed as generalizations of the linear hyperbolic map on \(\mathbb{T}^2\) induced by the matrix \(\binom{2 1}{1 1}\), and are known to be non-uniformly hyperbolic due to the existence of singularities.
In this paper, the authors study these linked-twist maps and prove that the correlations of the standard linked-twist map decays as \(\mathcal{O}(1/n)\). The authors remark that their proof can be applied to a pair of general annuli used to define the linked-twist map, and point out that there is a strong transition from polynomial decay to exponential decay if the two defining annuli are both thickened to the whole torus.

MSC:

37A25 Ergodicity, mixing, rates of mixing
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)

References:

[1] Przytycki, Ann. Sci. Éc. Norm. Supér. (4) 16 pp 345– (1983) · Zbl 0531.58031 · doi:10.24033/asens.1451
[2] DOI: 10.1080/14689361003639080 · Zbl 1205.37013 · doi:10.1080/14689361003639080
[3] Oseledec, Trans. Moscow Math. Soc. 19 pp 197– (1968)
[4] DOI: 10.1017/S0143385700008932 · Zbl 0851.58029 · doi:10.1017/S0143385700008932
[5] DOI: 10.1007/s00220-007-0360-x · Zbl 1143.37024 · doi:10.1007/s00220-007-0360-x
[6] DOI: 10.1090/S0002-9939-96-03357-6 · Zbl 0849.58041 · doi:10.1090/S0002-9939-96-03357-6
[7] DOI: 10.1088/0951-7715/18/4/006 · Zbl 1143.37314 · doi:10.1088/0951-7715/18/4/006
[8] DOI: 10.1017/S0143385703000270 · Zbl 1115.37037 · doi:10.1017/S0143385703000270
[9] DOI: 10.1007/s00332-005-0743-0 · Zbl 1108.37035 · doi:10.1007/s00332-005-0743-0
[10] DOI: 10.1017/S0143385700008695 · Zbl 0853.58081 · doi:10.1017/S0143385700008695
[11] Katok, Invariant Manifolds, Entropy and Billards: Smooth Maps with Singularities (1986) · doi:10.1007/BFb0099031
[12] DOI: 10.1103/PhysRevLett.99.114501 · doi:10.1103/PhysRevLett.99.114501
[13] DOI: 10.1023/A:1004581304939 · doi:10.1023/A:1004581304939
[14] DOI: 10.1103/PhysRevE.78.026211 · doi:10.1103/PhysRevE.78.026211
[15] DOI: 10.1007/s00332-004-0673-2 · Zbl 1095.37001 · doi:10.1007/s00332-004-0673-2
[16] Devaney, Proc. Int. Conf., Northwestern University, Evanston, IL, 1979 pp 121– (1980)
[17] Burton, Proc. Int. Conf., Northwestern University, Evanston, IL, 1979 pp 35– (1980)
[18] Baladi, Positive Transfer Operators and Decay of Correlations (2000) · doi:10.1142/3657
[19] DOI: 10.1016/S0167-2789(98)00219-X · Zbl 1076.37501 · doi:10.1016/S0167-2789(98)00219-X
[20] DOI: 10.1007/BF02808180 · Zbl 0983.37005 · doi:10.1007/BF02808180
[21] DOI: 10.2307/120960 · Zbl 0945.37009 · doi:10.2307/120960
[22] Wojtkowski, Nonlinear Dynamics (Proc. Int. Conf., New York, 1979) pp 65– (1980)
[23] DOI: 10.1098/rsta.2003.1356 · Zbl 1069.76502 · doi:10.1098/rsta.2003.1356
[24] DOI: 10.1103/PhysRevE.87.012906 · doi:10.1103/PhysRevE.87.012906
[25] DOI: 10.1017/CBO9780511618116 · doi:10.1017/CBO9780511618116
[26] DOI: 10.1070/RM1977v032n04ABEH001639 · Zbl 0383.58011 · doi:10.1070/RM1977v032n04ABEH001639
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.