×

Nonlinear magnetohydrodynamics simulation using high-order finite elements. (English) Zbl 1087.76070

Summary: A conforming representation composed of 2D finite elements and finite Fourier series is applied to 3D nonlinear non-ideal magnetohydrodynamics using a semi-implicit time-advance. The self-adjoint semi-implicit operator and variational approach to spatial discretization are synergistic and enable simulation in the extremely stiff conditions found in high temperature plasmas without sacrificing the geometric flexibility needed for modeling laboratory experiments. Growth rates for resistive tearing modes with experimentally relevant Lundquist number are computed accurately with time-steps that are large with respect to the global Alfvén time and moderate spatial resolution when the finite elements have basis functions of polynomial degree \((p)\) two or larger. An error diffusion method controls the generation of magnetic divergence error. Convergence studies show that this approach is effective for continuous basis functions with \(p \geqslant 2\), where the number of test functions for the divergence control terms is less than the number of degrees of freedom in the expansion for vector fields. Anisotropic thermal conduction at realistic ratios of parallel to perpendicular conductivity \((\chi_{\|}/\chi_{\bot})\) is computed accurately with \(p \geqslant 3\) without mesh alignment. A simulation of tearing-mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the algorithm in nonlinear conditions, and its results are used to verify the accuracy of the numerical anisotropic thermal conduction in 3D magnetic topologies.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow

Software:

NIMROD
Full Text: DOI

References:

[1] Gruber, R.; Rappaz, J., Finite Element Methods in Linear Ideal Magnetohydrodynamics (1985), Springer: Springer Berlin, pp. 79-117 · Zbl 0573.76001
[2] Degtyarev, L. M.; Medvedev, S. Yu., Comput. Phys. Commun., 43, 29 (1986) · Zbl 0664.76151
[3] Shu, C.-W., High order ENO and WENO schemes for computational fluid dynamics, (Barth, T. J.; Deconinck, H., High Order Methods for Computational Physics (1999), Springer: Springer Berlin) · Zbl 0937.76044
[4] Babuska, I.; Szabo, B. A.; Katz, I. N., SIAM J. Numer. Anal., 18, 515 (1981) · Zbl 0487.65059
[5] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[6] Marder, B., J. Comput. Phys., 68, 48 (1987) · Zbl 0603.65079
[7] A.H. Glasser, C.R. Sovinec, R.A. Nebel, T.A. Gianakon, S.J. Plimpton, M.S. Chu, D.D. Schnack, and the NIMROD Team, Plasma Phys. Control. Fusion 41 (1999) A747; A.H. Glasser, C.R. Sovinec, R.A. Nebel, T.A. Gianakon, S.J. Plimpton, M.S. Chu, D.D. Schnack, and the NIMROD Team, Plasma Phys. Control. Fusion 41 (1999) A747
[8] Munz, C.-D.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voß, U., J. Comput. Phys., 161, 484 (2000) · Zbl 0970.78010
[9] Brackbill, J. U.; Barnes, D. C., J. Comput. Phys., 35, 426 (1980) · Zbl 0429.76079
[10] Hughes, T. J.R.; Liu, W. K.; Brooks, A., J. Comput. Phys., 30, 1 (1979) · Zbl 0412.76023
[11] Charlton, L. A.; Holmes, J. A.; Hicks, H. R.; Lynch, V. E.; Carreras, B. A., J. Comput. Phys., 86, 270 (1990) · Zbl 0682.76100
[12] Park, W.; Monticello, D. A., Nucl. Fusion, 30, 2413 (1990)
[13] Lerbinger, K.; Luciani, J. F., J. Comput. Phys., 97, 444 (1991) · Zbl 0738.76051
[14] Popov, A. M.; Chan, V. S.; Chu, M. S.; Liu, Y. Q.; Rice, B. W.; Turnbull, A. D., Phys. Plasmas, 8, 3605 (2001)
[15] Strauss, H. R.; Park, W., Phys. Plasmas, 5, 2676 (1998)
[16] Gottlieb, D.; Orzag, S. A., Numerical analysis of spectral methods: theory and application, (Regional Conference Series in Applied Mathematics, vol. 26 (1977), SIAM: SIAM Philadelphia) · Zbl 0412.65058
[17] Harned, D. S.; Kerner, W., J. Comput. Phys., 60, 62 (1985) · Zbl 0581.76057
[18] Harned, D. S.; Schnack, D. D., J. Comput. Phys., 65, 57 (1986) · Zbl 0591.76187
[19] Braginskii, S. I., Transport processes in a plasma, Reviews of Modern Physics, vol. 205 (1965), Consultants Bureau: Consultants Bureau New York
[20] Held, E. D.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R., Phys. Plasmas, 8, 1171 (2001)
[21] Gianakon, T. A.; Kruger, S. E.; Hegna, C. C., Phys. Plasmas, 9, 536 (2002)
[22] Parker, S. E.; Chen, Y.; Kim, C. C., Bull. Am. Phys. Soc., 47, 9, 163 (2002)
[23] Schnack, D. D.; Barnes, D. C.; Mikić, Z.; Harned, D. S.; Caramana, E. J., J. Comput. Phys., 70, 330 (1987) · Zbl 0615.76109
[24] Caramana, E. J., J. Comput. Phys., 96, 484 (1991) · Zbl 0732.65082
[25] Freidberg, J. P., Ideal Magnetohydrodynamics (1987), Plenum Press: Plenum Press New York, pp. 244-246
[26] Courant, R.; Friedrichs, K. O.; Lewy, H., Math. Ann., 100, 32 (1928) · JFM 54.0486.01
[27] Lionello, R.; Mikić, Z.; Linker, J. A., J. Comput. Phys., 152, 346 (1999) · Zbl 0942.76049
[28] A.H. Glasser, C.R. Sovinec, Numerical analysis of the NIMROD formulation, International Sherwood Fusion Theory Conference, April 28-30, Madison, Wisconsin (Available from http://www.nimrodteam.org/presentations/Sherwood97/num_anal.pdf; A.H. Glasser, C.R. Sovinec, Numerical analysis of the NIMROD formulation, International Sherwood Fusion Theory Conference, April 28-30, Madison, Wisconsin (Available from http://www.nimrodteam.org/presentations/Sherwood97/num_anal.pdf
[29] Schnack, D. D.; Baxter, D. C., J. Comput. Phys., 55, 485 (1984) · Zbl 0555.76093
[30] Schwab, C., hp-FEM for fluid flow simulation, (Barth, T. J.; Deconinck, H., High Order Methods for Computational Physics (1999), Springer: Springer Berlin) · Zbl 0937.76037
[31] Gunzburger, M. D., Mathematical aspects of finite element methods for incompressible viscous flows, (Finite Elements Theory and Application (1988), Springer: Springer New York) · Zbl 0601.76019
[32] Hughes, T. J.R., The Finite Element Method (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ, pp. 209-217 · Zbl 0542.76093
[33] Furth, H. P.; Killeen, J.; Rosenbluth, M. N., Phys. Fluids, 6, 459 (1963)
[34] Coppi, B.; Greene, J. M.; Johnson, J. L., Nucl. Fusion, 6, 101 (1966)
[35] Newcomb, W. A., Ann. Phys., 10, 232 (1960) · Zbl 0103.43702
[36] Bickerton, R. J., Proc. Phys. Soc. London, 72, 618 (1958)
[37] Robinson, D. C., Nucl. Fusion, 18, 939 (1978)
[38] Glasser, A. H.; Greene, J. M.; Johnson, J. L., Phys. Fluids, 19, 567 (1976)
[39] Rutherford, P. H., Phys. Fluids, 16, 1903 (1973)
[40] Biskamp, D., Nonlinear Magnetohydrodynamics (1993), Cambridge University Press: Cambridge University Press Cambridge, UK, pp. 107-114
[41] Gianakon, T. A.; Callen, J. D.; Hegna, C. C., Phys. Plasmas, 3, 4637 (1996)
[42] Hegna, C. C., Phys. Plasmas, 5, 1767 (1998)
[43] Fitzpatrick, R., Phys. Plasmas, 2, 825 (1995)
[44] Brezzi, F., A survey of mixed finite element methods, (Finite Elements Theory and Application (1988), Springer: Springer New York) · Zbl 0665.73058
[45] Lutjens, H.; Luciani, J. F., Comput. Phys. Commun., 95, 47 (1996) · Zbl 0923.76207
[46] Boland, J. M.; Nicolaides, R. A., SIAM J. Numer. Anal., 20, 722 (1983) · Zbl 0521.76027
[47] Malkus, D. S.; Hughes, T. J.R., Comput. Methods. Appl. Mech. Eng., 15, 63 (1978) · Zbl 0381.73075
[48] S.E. Kruger, D.D. Schnack, D.P. Brennan, T.A. Gianakon, C.R. Sovinec, Nonlinear MHD dynamics of tokamak plasmas on multiple time scales, Nucl. Fusion, submitted; S.E. Kruger, D.D. Schnack, D.P. Brennan, T.A. Gianakon, C.R. Sovinec, Nonlinear MHD dynamics of tokamak plasmas on multiple time scales, Nucl. Fusion, submitted
[49] C.R. Sovinec, T.A. Gianakon, E.D. Held, S.E. Kruger, D.D. Schnack, and the NIMROD Team, Phys. Plasmas 10 (2003) 1727; C.R. Sovinec, T.A. Gianakon, E.D. Held, S.E. Kruger, D.D. Schnack, and the NIMROD Team, Phys. Plasmas 10 (2003) 1727
[50] Finn, J. M.; Sovinec, C. R.; Del-Castillo-Negrete, D., Phys. Rev. Lett., 85, 4538 (2000)
[51] Sovinec, C. R.; Finn, J. M.; Del-Castillo-Negrete, D., Phys. Plasmas, 8, 475 (2001)
[52] Cohen, R. H.; Berk, H. L.; Cohen, B. I.; Fowler, T. K.; Hooper, E. B.; LoDestro, L. L.; Morse, E. C.; Pearlstein, L. D.; Rognlien, T. D.; Ryutov, D. D.; Sovinec, C. R.; Woodruff, S., Nucl. Fusion, 43, 1220 (2003)
[53] P. Martin, L. Marrelli, G. Spizzo, P. Franz, P. Piovesan, I. Predebon, T. Bolzonella, S. Cappello, A. Cravotta, D.F. Escande, L. Frassinetti, S. Ortolani, R. Paccagnella, D. Terranova, B.E. Chapman, D. Craig, S.C. Prager, J.S. Sarff, P. Brunsell, J.-A. Malmberg, J. Drake, Y. Yagi, H. Koguchi, Y. Hirano, R.B. White, C. Sovinec, C. Xiao, R.A. Nebel, D.D. Schnack, and the RFX, MST, EXTRAP T2R, and TPE-RX teams, Overview of quasi single helicity experiments in reversed field pinches, Nucl. Fusion, accepted for publication; P. Martin, L. Marrelli, G. Spizzo, P. Franz, P. Piovesan, I. Predebon, T. Bolzonella, S. Cappello, A. Cravotta, D.F. Escande, L. Frassinetti, S. Ortolani, R. Paccagnella, D. Terranova, B.E. Chapman, D. Craig, S.C. Prager, J.S. Sarff, P. Brunsell, J.-A. Malmberg, J. Drake, Y. Yagi, H. Koguchi, Y. Hirano, R.B. White, C. Sovinec, C. Xiao, R.A. Nebel, D.D. Schnack, and the RFX, MST, EXTRAP T2R, and TPE-RX teams, Overview of quasi single helicity experiments in reversed field pinches, Nucl. Fusion, accepted for publication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.