×

Methods for and results from the study of design principles in molecular systems. (English) Zbl 1214.92025

Summary: Most aspects of molecular biology can be understood in terms of biological design principles. These principles can be loosely defined as qualitative and quantitative features that emerge in evolution and recur more frequently than one would expect by chance alone in biological systems that perform a given type of processes or functions. Furthermore, such recurrence can be rationalized in terms of the functional advantage that the design provides to the system when compared with possible alternatives.
This paper focuses on those design features that can be related to improved functional effectiveness of molecular and regulatory networks. We begin by reviewing assumptions and methods that underlie the study of such principles in molecular networks. We follow by discussing many of the design principles that have been found in genetic, metabolic, and signal transduction circuits. We concentrate mainly on results in the context of biochemical systems theory, although we also briefly discuss other work. We conclude by discussing the importance of these principles for both, understanding the natural evolution of complex networks at the molecular level and for creating artificial biological systems with specific features.

MSC:

92C40 Biochemistry, molecular biology
92C42 Systems biology, networks
Full Text: DOI

References:

[1] Alon, U., Biological networks: the tinkerer as an engineer, Science., 301, 1866 (2003)
[2] Turner, J., The Tinkerer’s Accomplice: How Design Emerges from Life Itself (2007), Harvard University Press
[3] Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits (2006), Chapman and Hall/CRC · Zbl 1141.92002
[4] Banerjee, R.; Roy, D., Codon usage and gene expression pattern of Stenotrophomonas maltophilia R551-3 for pathogenic mode of living, Biochem. Biophys. Res. Commun., 390, 177 (2009)
[5] Sharp, P. M.; Emery, L. R.; Zeng, K., Forces that influence the evolution of codon bias, Philos. Trans. R. Soc. Lond. B Biol. Sci., 365, 1203 (2010)
[6] Vilaprinyo, E.; Alves, R.; Sorribas, A., Minimization of biosynthetic costs in adaptive gene expression responses of yeast to environmental changes, PLoS Comput. Biol., 6, e1000674 (2010)
[7] Szilagyi, A.; Gyorffy, D.; Zavodszky, P., The twilight zone between protein order and disorder, Biophys. J., 95, 1612 (2008)
[8] Minary, P.; Levitt, M., Probing protein fold space with a simplified model, J. Mol. Biol., 375, 920 (2008)
[9] Melendez, R.; Melendez-Hevia, E.; Mas, F.; Mach, J.; Cascante, M., Physical constraints in the synthesis of glycogen that influence its structural homogeneity: a two-dimensional approach, Biophys. J., 75, 106 (1998)
[10] Melendez, R.; Melendez-Hevia, E.; Cascante, M., How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building, J. Mol. Evol., 45, 446 (1997)
[11] Irvine, D. H.; Savageau, M. A., Network regulation of the immune response: modulation of suppressor lymphocytes by alternative signals including contrasuppression, J. Immunol., 134, 2117 (1985)
[12] Irvine, D. H.; Savageau, M. A., Network regulation of the immune response: alternative control points for suppressor modulation of effector lymphocytes, J. Immunol., 134, 2100 (1985)
[13] Savageau, M. A., Concepts relating behavior of biochemical systems to their underlyin molecular properties, Arch. Biochem. Biophys., 145, 612 (1971)
[14] Savageau, M. A., Genetic regulatory mechanisms and the ecological niche of Escherichia coli, Proc. Natl. Acad. Sci. USA, 71, 2453 (1974)
[15] Savageau, M. A., Optimal design of feedback-control by inhibition – steady-state considerations, J. Mol. Evol., 4, 139 (1974)
[16] Savageau, M. A., Comparison of classical and autogenous systems of regulation in inducible operons, Nature, 252, 546 (1974)
[17] Savageau, M. A., Kinetic organization of biosynthetic regulatory systems in bacteria, Abstr. Papers Am. Chem. Soc., 26 (1974)
[18] Savageau, M. A., Selection of positive and negative mechanisms of genetic-control in enteric bacteria, Federation Proc., 33, 1464 (1974)
[19] Savageau, M. A., Optimal design of feedback-control by inhibition – dynamic considerations, J. Mol. Evol., 5, 199 (1975)
[20] Savageau, M. A., Biochemical systems analysis: a study of function and design in molecular biology (1976), Addison-Wesley · Zbl 0398.92013
[21] Voit, E. O., Canonical nonlinear modeling (1991), Springer · Zbl 0785.92004
[22] Alves, R.; Savageau, M. A., Extending the method of mathematically controlled comparison to include numerical comparisons, Bioinformatics, 16, 786 (2000)
[23] Schwacke, J. H.; Voit, E. O., Improved methods for the mathematically controlled comparison of biochemical systems, Theor Biol. Med. Model., 1, 1 (2004)
[24] Coelho, P. M.; Salvador, A.; Savageau, M. A., Quantifying global tolerance of biochemical systems: design implications for moiety-transfer cycles, PLoS Comput. Biol., 5, e1000319 (2009)
[25] Savageau, M. A.; Coelho, P. M.; Fasani, R. A.; Tolla, D. A.; Salvador, A., Phenotypes and tolerances in the design space of biochemical systems, Proc. Natl. Acad. Sci. USA, 106, 6435 (2009)
[26] Savageau, M. A.; Fasani, R. A., Qualitatively distinct phenotypes in the design space of biochemical systems, FEBS Lett., 583, 3914 (2009)
[27] Clutton-Brock, T.; Sheldon, B. C., Individuals populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology, Trends Ecol. Evol., 25, 562 (2010)
[28] Vogel, C.; Teichmann, S. A.; Pereira-Leal, J., The relationship between domain duplication and recombination, J. Mol. Biol., 346, 355 (2005)
[29] Price, M. N.; Dehal, P. S.; Arkin, A. P., Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli, Genome Biol., 9, R4 (2008)
[30] Price, M. N.; Arkin, A. P.; Alm, E. J., The life-cycle of operons, PLoS Genet., 2, e96 (2006)
[31] Kashtan, N.; Parter, M.; Dekel, E.; Mayo, A. E.; Alon, U., Extinctions in heterogeneous environments and the evolution of modularity, Evolution, 63, 1964 (2009)
[32] Kashtan, N.; Mayo, A. E.; Kalisky, T.; Alon, U., An analytically solvable model for rapid evolution of modular structure, PLoS Comput. Biol., 5, e1000355 (2009)
[33] Parter, M.; Kashtan, N.; Alon, U., Facilitated variation: how evolution learns from past environments to generalize to new environments, PLoS Comput. Biol., 4, e1000206 (2008)
[34] Parter, M.; Kashtan, N.; Alon, U., Environmental variability and modularity of bacterial metabolic networks, BMC Evol. Biol., 7, 169 (2007)
[35] Kashtan, N.; Alon, U., Spontaneous evolution of modularity and network motifs, Proc. Natl. Acad. Sci. USA, 102, 13773 (2005)
[36] Bayer, T. S.; Hoff, K. G.; Beisel, C. L.; Lee, J. J.; Smolke, C. D., Synthetic control of a fitness tradeoff in yeast nitrogen metabolism, J. Biol. Eng., 3, 1 (2009)
[37] Cagatay, T.; Turcotte, M.; Elowitz, M. B.; Garcia-Ojalvo, J.; Suel, G. M., Architecture-dependent noise discriminates functionally analogous differentiation circuits, Cell, 139, 512 (2009)
[38] Igoshin, O. A.; Alves, R.; Savageau, M. A., Hysteretic and graded responses in bacterial two-component signal transduction, Mol. Microbiol., 68, 1196 (2008)
[39] Coelho, P. M.; Salvador, A.; Savageau, M. A., Relating mutant genotype to phenotype via quantitative behavior of the NADPH redox cycle in human erythrocytes, PLoS One, 5 (2010)
[40] Savageau, M. A., Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems, Nature, 229, 542 (1971)
[41] Kitano, H., Towards a theory of biological robustness, Mol. Syst. Biol., 3, 137 (2007)
[42] Rao, C. V.; Arkin, A. P., Control motifs for intracellular regulatory networks, Annu. Rev. Biomed. Eng., 3, 391 (2001)
[43] Salvador, A.; Savageau, M. A., Evolution of enzymes in a series is driven by dissimilar functional demands, Proc. Natl. Acad. Sci. USA, 103, 2226 (2006)
[44] Salvador, A.; Savageau, M. A., Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes, Proc. Natl. Acad. Sci. USA, 100, 14463 (2003)
[45] Craciun, G.; Feinberg, M., Multiple equilibria in complex chemical reaction networks: I. The injectivity property, Siam J. Appl. Math., 65, 1526 (2005) · Zbl 1094.80005
[46] Craciun, G.; Feinberg, M., Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models, IEE Proc. Syst. Biol., 153, 179 (2006)
[47] Craciun, G.; Feinberg, M., Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph, Siam J. Appl. Math., 66, 1321 (2006) · Zbl 1136.80306
[48] Craciun, G.; Feinberg, M., Multiple equilibria in complex chemical reaction networks: semiopen mass action systems, Siam J. Appl. Math., 70, 1859 (2010) · Zbl 1255.80020
[49] Craciun, G.; Tang, Y. Z.; Feinberg, M., Understanding bistability in complex enzyme-driven reaction networks, Proc. Natl. Acad. Sci. USA, 103, 8697 (2006) · Zbl 1254.93116
[50] Feinberg, M., Reaction network structure and multiple steady-states in complex isothermal reactors, Abstr. Papers Am. Chem. Soc., 189, 35 (1985)
[51] Feinberg, M., The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Rational Mech. Anal., 132, 311 (1995) · Zbl 0853.92024
[52] Feinberg, M., Multiple steady states for chemical reaction networks of deficiency one, Arch. Rational Mech. Anal., 132, 371 (1995) · Zbl 0853.92025
[53] Schlosser, P. M.; Feinberg, M., A theory of multiple steady-states in isothermal homogeneous cfstrs with many reactions, Chem. Eng. Sci., 49, 1749 (1994)
[54] Shinar, G.; Alon, U.; Feinberg, M., Sensitivity and robustness in chemical reaction networks, Soc. Ind. Appl. Math., 69, 977 (2009) · Zbl 1195.80023
[55] Shinar, G.; Feinberg, M., Structural sources of robustness in biochemical reaction networks, Science, 327, 1389 (2010)
[56] Melendez-Hevia, E., The game of the pentose phosphate cycle: a mathematical approach to study the optimization in design of metabolic pathways during evolution, Biomed. Biochim. Acta, 49, 903 (1990)
[57] Melendez-Hevia, E.; Isidoro, A., The game of the pentose phosphate cycle, J. Theor. Biol., 117, 251 (1985)
[58] Melendez-Hevia, E.; Torres, N. V., Economy of design in metabolic pathways: further remarks on the game of the pentose phosphate cycle, J. Theor. Biol., 132, 97 (1988)
[59] Sorribas, A.; Pozo, C.; Vilaprinyo, E.; Guillen-Gosalbez, G.; Jimenez, L.; Alves, R., Optimization and evolution in metabolic pathways: global optimization techniques in Generalized Mass Action models, J. Biotechnol., 149, 141 (2010)
[60] Vilaprinyo, E.; Alves, R.; Sorribas, A., Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock, BMC Bioinform., 7, 184 (2006)
[61] Voit, E. O.; Radivoyevitch, T., Biochemical systems analysis of genome-wide expression data, Bioinformatics, 16, 1023 (2000)
[62] Guillen-Gosalbez, G.; Sorribas, A., Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses, BMC Bioinform., 10, 386 (2009)
[63] Igoshin, O. A.; Price, C. W.; Savageau, M. A., Signalling network with a bistable hysteretic switch controls developmental activation of the sigma transcription factor in Bacillus subtilis, Mol. Microbiol., 61, 165 (2006)
[64] Hlavacek, W. S.; Savageau, M. A., Rules for coupled expression of regulator and effector genes in inducible circuits, J. Mol. Biol., 255, 121 (1996)
[65] Hlavacek, W. S.; Savageau, M. A., Completely uncoupled and perfectly coupled gene expression in repressible systems, J. Mol. Biol., 266, 538 (1997)
[66] Savageau, M. A., Demand theory of gene regulation. I. Quantitative development of the theory, Genetics, 149, 1665 (1998)
[67] Savageau, M. A., Demand theory of gene regulation. II. Quantitative application to the lactose and maltose operons of Escherichia coli, Genetics, 149, 1677 (1998)
[68] Bose, I.; Ghosh, B.; Karmakar, R., Motifs in gene transcription regulatory networks, Physica A, 346, 49 (2004)
[69] Novak, B.; Tyson, J. J., Design principles of biochemical oscillators, Nat. Rev. Mol. Cell Biol., 9, 981 (2008)
[70] Alon, U., Network motifs: theory and experimental approaches, Nat. Rev. Genet., 8, 450 (2007)
[71] Cotterell, J.; Sharpe, J., An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients, Mol. Syst. Biol., 6 (2010)
[72] Mangan, S.; Alon, U., Structure and function of the feed-forward loop network motif, Proc. Natl. Acad. Sci. USA, 100, 11980 (2003)
[73] Dekel, E.; Mangan, S.; Alon, U., Environmental selection of the feed-forward loop circuit in gene-regulation networks, Phys. Biol., 2, 81 (2005)
[74] Wall, M. E.; Dunlop, M. J.; Hlavacek, W. S., Multiple functions of a feed-forward-loop gene circuit, J. Mol. Biol., 349, 501 (2005)
[75] Savageau, M. A., Regulation of differentiated cell-specific functions, Proc. Natl. Acad. Sci. USA, 80, 1411 (1983)
[76] Hlavacek, W. S.; Savageau, M. A., Subunit structure of regulator proteins influences the design of gene circuitry: analysis of perfectly coupled and completely uncoupled circuits, J. Mol. Biol., 248, 739 (1995)
[77] Wall, M. E.; Hlavacek, W. S.; Savageau, M. A., Design principles for regulator gene expression in a repressible gene circuit, J. Mol. Biol., 332, 861 (2003)
[78] Wall, M. E.; Hlavacek, W. S.; Savageau, M. A., Design of gene circuits: lessons from bacteria, Nat. Rev. Genet., 5, 34 (2004)
[79] Shinar, G.; Dekel, E.; Tlusty, T.; Alon, U., Rules for biological regulation based on error minimization, Proc. Natl. Acad. Sci. USA, 103, 3999 (2006)
[80] Libby, E.; Perkins, T. J.; Swain, P. S., Noisy information processing through transcriptional regulation, Proc. Natl. Acad. Sci. USA, 104, 7151 (2007)
[81] Sprinzak, D.; Lakhanpal, A.; Lebon, L.; Santat, L. A.; Fontes, M. E.; Anderson, G. A.; Garcia-Ojalvo, J.; Elowitz, M. B., Cis-interactions between Notch and Delta generate mutually exclusive signalling states, Nature, 465, 86 (2010)
[82] Gerland, U.; Hwa, T., Evolutionary selection between alternative modes of gene regulation, Proc. Natl. Acad. Sci. USA, 106, 8841 (2009)
[83] Peter, I. S.; Davidson, E. H., Modularity and design principles in the sea urchin embryo gene regulatory network, FEBS Lett., 583, 3948 (2009)
[84] Davidson, E. H., Network design principles from the sea urchin embryo, Curr. Opin. Genet. Dev., 19, 535 (2009)
[85] Acar, M.; Pando, B. F.; Arnold, F. H.; Elowitz, M. B.; van Oudenaarden, A., A general mechanism for network-dosage compensation in gene circuits, Science., 329, 1656 (2010) · Zbl 1355.92027
[86] Zaslaver, A.; Mayo, A. E.; Rosenberg, R.; Bashkin, P.; Sberro, H.; Tsalyuk, M.; Surette, M. G.; Alon, U., Just-in-time transcription program in metabolic pathways, Nat. Genet., 36, 486 (2004)
[87] von Heijne, G.; Savageau, M. A., RNA splicing: advantages of parallel processing, J. Theor. Biol., 98, 563 (1982)
[88] Beisel, C. L.; Smolke, C. D., Design principles for riboswitch function, PLoS Comput. Biol., 5, e1000363 (2009)
[89] Win, M. N.; Liang, J. C.; Smolke, C. D., Frameworks for programming biological function through RNA parts and devices, Chem. Biol., 16, 298 (2009)
[90] Win, M. N.; Smolke, C. D., Higher-order cellular information processing with synthetic RNA devices, Science., 322, 456 (2008)
[91] Pfleger, B. F.; Pitera, D. J.; Smolke, C. D.; Keasling, J. D., Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes, Nat. Biotechnol., 24, 1027 (2006)
[92] Levine, E.; Hwa, T., Small RNAs establish gene expression thresholds, Curr. Opin. Microbiol., 11, 574 (2008)
[93] Levine, E.; Zhang, Z.; Kuhlman, T.; Hwa, T., Quantitative characteristics of gene regulation by small RNA, PLoS Biol., 5, e229 (2007)
[94] Flynt, A. S.; Lai, E. C., Biological principles of microRNA-mediated regulation: shared themes amid diversity, Nat. Rev. Genet., 9, 831 (2008)
[95] Savageau, M. A., Feedforward inhibition in biosynthetic pathways: inhibition of the aminoacyl-tRNA synthetase by the penultimate product, J. Theor. Biol., 77, 385 (1979)
[96] Savageau, M. A.; Jacknow, G., Feedfoward inhibition in biosynthetic pathways: inhibition of the aminoacyl-tRNA synthetase by intermediates of the pathway, J. Theor. Biol., 77, 405 (1979)
[97] Alves, R.; Savageau, M. A., Effect of overall feedback inhibition in unbranched biosynthetic pathways, Biophys. J., 79, 2290 (2000)
[98] Alves, R.; Savageau, M. A., Irreversibility in unbranched pathways: preferred positions based on regulatory considerations, Biophys. J., 80, 1174 (2001)
[99] Shinar, G.; Rabinowitz, J. D.; Alon, U., Robustness in glyoxylate bypass regulation, PLoS Comput. Biol., 5, e1000297 (2009)
[100] Salvador, A., Evolution of enzymes in a series is driven by dissimilar functional demands, Proc. Natl. Acad. Sci. USA (2005)
[101] Kwon, Y. K.; Cho, K. H., Coherent coupling of feedback loops: a design principle of cell signaling networks, Bioinformatics, 24, 1926 (2008)
[102] Heinrich, R.; Melendez-Hevia, E.; Montero, F.; Nuno, J. C.; Stephani, A.; Waddell, T. G., The structural design of glycolysis: an evolutionary approach, Biochem. Soc. Trans., 27, 294 (1999)
[103] Melendez-Hevia, E.; Waddell, T. G.; Heinrich, R.; Montero, F., Theoretical approaches to the evolutionary optimization of glycolysis-chemical analysis, Eur. J. Biochem., 244, 527 (1997)
[104] Heinrich, R.; Montero, F.; Klipp, E.; Waddell, T. G.; Melendez-Hevia, E., Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints, Eur. J. Biochem., 243, 191 (1997)
[105] Mittenthal, J. E.; Clarke, B.; Waddell, T. G.; Fawcett, G., A new method for assembling metabolic networks, with application to the Krebs citric acid cycle, J. Theor. Biol., 208, 361 (2001)
[106] Mittenthal, J. E., An algorithm to assemble pathways from processes, Pac. Symp. Biocomput., 292 (1997)
[107] Mittenthal, J. E.; Yuan, A.; Clarke, B.; Scheeline, A., Designing metabolism: alternative connectivities for the pentose phosphate pathway, Bull. Math. Biol., 60, 815 (1998) · Zbl 0953.92012
[108] Noor, E.; Eden, E.; Milo, R.; Alon, U., Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy, Mol. Cell, 39, 809 (2010)
[109] Kurland, C. G.; Dong, H., Bacterial growth inhibition by overproduction of protein, Mol. Microbiol., 21, 1 (1996)
[110] Cascante, M.; Llorens, M.; Melendez-Hevia, E.; Puigjaner, J.; Montero, F.; Marti, E., The metabolic productivity of the cell factory, J. Theor. Biol., 182, 317 (1996)
[111] Cascante, M.; Melendez-Hevia, E.; Kholodenko, B.; Sicilia, J.; Kacser, H., Control analysis of transit time for free and enzyme-bound metabolites: physiological and evolutionary significance of metabolic response times, Biochem. J., 308, Pt 3, 895 (1995)
[112] Durek, P.; Walther, D., The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles, BMC Syst. Biol., 2, 100 (2008)
[113] Ghosh, A.; Chance, B., Oscillations of Glycolytic Intermediates in Yeast Cells, Biochem. Biophys. Res. Commun., 16, 174 (1964)
[114] Palmeirim, I.; Henrique, D.; IshHorowicz, D.; Pourquie, O., Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis, Cell, 91, 639 (1997)
[115] Leloup, J. C.; Goldbeter, A., Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila, J. Theor. Biol., 198, 445 (1999)
[116] Csikasz-Nagy, A.; Novak, B.; Tyson, J. J., Reverse engineering models of cell cycle regulation, Adv. Exp. Med. Biol., 641, 88 (2008)
[117] Csikasz-Nagy, A.; Kapuy, O.; Toth, A.; Pal, C.; Jensen, L. J.; Uhlmann, F.; Tyson, J. J.; Novak, B., Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation, Mol. Syst. Biol., 5, 236 (2009)
[118] Drapkin, B. J.; Lu, Y.; Procko, A. L.; Timney, B. L.; Cross, F. R., Analysis of the mitotic exit control system using locked levels of stable mitotic cyclin, Mol. Syst. Biol., 5, 328 (2009)
[119] Tyson, J. J.; Novak, B., Temporal organization of the cell cycle, Curr. Biol., 18, R759 (2008)
[120] Kiang, L.; Heichinger, C.; Watt, S.; Bahler, J.; Nurse, P., Cyclin-dependent kinase inhibits reinitiation of a normal S-phase program during G2 in fission yeast, Mol. Cell Biol., 29, 4025 (2009)
[121] Moseley, J. B.; Mayeux, A.; Paoletti, A.; Nurse, P., A spatial gradient coordinates cell size and mitotic entry in fission yeast, Nature, 459, 857 (2009)
[122] Lu, Y.; Cross, F. R., Periodic cyclin-Cdk activity entrains an autonomous Cdc14 release oscillator, Cell, 141, 268 (2010)
[123] Charvin, G.; Oikonomou, C.; Siggia, E. D.; Cross, F. R., Origin of irreversibility of cell cycle start in budding yeast, PLoS Biol., 8, e1000284 (2010)
[124] Young, M. W.; Kay, S. A., Time zones: a comparative genetics of circadian clocks, Nat. Rev. Genet., 2, 702 (2001)
[125] Rand, D. A.; Shulgin, B. V.; Salazar, D.; Millar, A. J., Design principles underlying circadian clocks, J. R. Soc. Interface, 1, 119 (2004)
[126] Rand, D. A.; Shulgin, B. V.; Salazar, J. D.; Millar, A. J., Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals, J. Theor. Biol., 238, 616 (2006) · Zbl 1445.92015
[127] Dalchau, N.; Hubbard, K. E.; Robertson, F. C.; Hotta, C. T.; Briggs, H. M.; Stan, G. B.; Goncalves, J. M.; Webb, A. A., Correct biological timing in Arabidopsis requires multiple light-signaling pathways, Proc. Natl. Acad. Sci. USA, 107, 13171 (2010)
[128] Locke, J. C.; Westermark, P. O.; Kramer, A.; Herzel, H., Global parameter search reveals design principles of the mammalian circadian clock, BMC Syst. Biol., 2, 22 (2008)
[129] Indic, P.; Schwartz, W. J.; Paydarfar, D., Design principles for phase-splitting behaviour of coupled cellular oscillators: clues from hamsters with ’split’ circadian rhythms, J. R. Soc. Interface, 5, 873 (2008)
[130] Pando, B. F.; van Oudenaarden, A., Coupling cellular oscillators-circadian and cell division cycles in cyanobacteria, Curr. Opin. Genet. Dev. (2010)
[131] Mori, T.; Binder, B.; Johnson, C. H., Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours, Proc. Natl. Acad. Sci. USA, 93, 10183 (1996)
[132] Yang, Q.; Pando, B. F.; Dong, G.; Golden, S. S.; van Oudenaarden, A., Circadian gating of the cell cycle revealed in single cyanobacterial cells, Science, 327, 1522 (2010)
[133] Matsuo, T.; Yamaguchi, S.; Mitsui, S.; Emi, A.; Shimoda, F.; Okamura, H., Control mechanism of the circadian clock for timing of cell division in vivo, Science, 302, 255 (2003)
[134] Nagoshi, E.; Saini, C.; Bauer, C.; Laroche, T.; Naef, F.; Schibler, U., Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells, Cell, 119, 693 (2004)
[135] Parkinson, J. S.; Appleby, Jeryl L.; Bourret, Robert B., Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled, Cell, 86, 845 (1996)
[136] Hoch, J. A., Two-component and phosphorelay signal transduction, Curr. Opin. Microbiol., 3, 165 (2000)
[137] D’Agostino, I. B.; Kieber, J. J., Phosphorelay signal transduction: the emerging family of plant response regulators, Trends Biochem. Sci., 24, 452 (1999)
[138] Loomis, W. F.; Kuspa, A.; Shaulsky, G., Two-component signal transduction systems in eukaryotic microorganisms, Curr. Opin. Microbiol., 1, 643 (1998)
[139] Shinar, G.; Milo, R.; Martinez, M. R.; Alon, U., Input output robustness in simple bacterial signaling systems, Proc. Natl. Acad. Sci. USA, 104, 19931 (2007)
[140] Alves, R.; Savageau, M. A., Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function, Mol. Microbiol., 48, 25 (2003)
[141] Mehta, P.; Goyal, S.; Long, T.; Bassler, B. L.; Wingreen, N. S., Information processing and signal integration in bacterial quorum sensing, Mol. Syst. Biol., 5, 325 (2009)
[142] Ray, J. C.; Igoshin, O. A., Adaptable functionality of transcriptional feedback in bacterial two-component systems, PLoS Comput. Biol., 6, e1000676 (2010)
[143] Plahte, E.; Mestl, T.; Omholt, S. W., A methodological basis for description and analysis of systems with complex switch-like interactions, J. Math. Biol., 36, 321 (1998) · Zbl 0897.92001
[144] Tiwari, [144]A.; Balázsi, G.; Gennaro, M. L.; Igoshin, O. A., Interplay of multiple feedbacks with post-translational kinetics results in bistability of mycobacterial stress-response. Phys. Biol., 23, 036005 (2010)
[145] Csikasz-Nagy, A.; Cardelli, L.; Soyer, O. S., Response dynamics of phosphorelays suggest their potential utility in cell signalling, J. R. Soc. Interface (2010)
[146] Goldbeter, A.; Koshland, D. E., An amplified sensitivity arising from covalent modification in biological systems, Proc. Natl. Acad. Sci. USA, 78, 6840 (1981)
[147] Goldbeter, A.; Koshland, D. E., Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects, J. Biol. Chem., 259, 14441 (1984)
[148] Goldbeter, A.; Koshland, D. E., Energy expenditure in the control of biochemical systems by covalent modification, J. Biol. Chem., 262, 4460 (1987)
[149] Huang, C. Y.; Ferrell, J. E., Ultrasensitivity in the mitogen-activated protein kinase cascade, Proc. Natl. Acad. Sci. USA, 93, 10078 (1996)
[150] Schwacke, J. H.; Voit, E. O., Computation and analysis of time-dependent sensitivities in Generalized Mass Action systems, J. Theor. Biol., 236, 21 (2005) · Zbl 1442.92061
[151] Schwacke, J. H.; Voit, E. O., Concentration-dependent effects on the rapid and efficient activation of the MAP kinase signaling cascade, Proteomics, 7, 890 (2007)
[152] Schwacke, J. H.; Voit, E. O., The potential for signal integration and processing in interacting MAP kinase cascades, J. Theor. Biol., 246, 604 (2007) · Zbl 1451.92136
[153] Shankaran, H.; Resat, H.; Wiley, H. S., Cell surface receptors for signal transduction and ligand transport: a design principles study, PLoS Comput. Biol., 3, e101 (2007)
[154] Shankaran, H.; Wiley, H. S.; Resat, H., Receptor downregulation and desensitization enhance the information processing ability of signalling receptors, BMC Syst. Biol., 1, 48 (2007)
[155] Lestas, I.; Vinnicombe, G.; Paulsson, J., Fundamental limits on the suppression of molecular fluctuations, Nature, 467, 174 (2010)
[156] Ben-Zvi, D.; Barkai, N., Scaling of morphogen gradients by an expansion-repression integral feedback control, Proc. Natl. Acad. Sci. USA, 107, 6924 (2010) · Zbl 1205.93108
[157] Ben-Zvi, D.; Fainsod, A.; Shilo, B.; Barkai, N., Scaling of the Bmp morphogen gradient in Xenopus embryos, Dev. Biol., 331, 425 (2009)
[158] Barkai, N.; Shilo, B. Z., Robust generation and decoding of morphogen gradients, Cold Spring Harb. Perspect. Biol., 1 (2009)
[159] Kampf, M. M.; Weber, W., Synthetic biology in the analysis and engineering of signaling processes, Integr. Biol. (Camb), 2, 12 (2010)
[160] Khalil, A. S.; Collins, J. J., Synthetic biology: applications come of age, Nat. Rev. Genet., 11, 367 (2010)
[161] Rothschild, L. J., A powerful toolkit for synthetic biology: Over 3.8 billion years of evolution, Bioessays, 32, 304 (2010)
[162] Aubel, D.; Fussenegger, M., Mammalian synthetic biology-from tools to therapies, Bioessays, 32, 332 (2010)
[163] Bashor, C. J.; Horwitz, A. A.; Peisajovich, S. G.; Lim, W. A., Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems, Annu. Rev. Biophys., 39, 515 (2010)
[164] Young, E.; Alper, H., Synthetic biology: tools to design, build, and optimize cellular processes, J. Biomed. Biotechnol., 2010, 130781 (2010)
[165] Alterovitz, G.; Muso, T.; Ramoni, M. F., The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms, Brief Bioinform., 11, 80 (2010)
[166] Mukherji, S.; van Oudenaarden, A., Synthetic biology: understanding biological design from synthetic circuits, Nat. Rev. Genet., 10, 859 (2009)
[167] Marner, W. D., Practical application of synthetic biology principles, Biotechnol. J., 4, 1406 (2009)
[168] Agapakis, C. M.; Silver, P. A., Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks, Mol. Biosyst., 5, 704 (2009)
[169] Purnick, P. E.; Weiss, R., The second wave of synthetic biology: from modules to systems, Nat. Rev. Mol. Cell Biol., 10, 410 (2009)
[170] Endler, L.; Rodriguez, N.; Juty, N.; Chelliah, V.; Laibe, C.; Li, C.; Le Novere, N., Designing and encoding models for synthetic biology, J. R. Soc. Interface, 6, Suppl. 4, S405 (2009)
[171] Martin, C. H.; Nielsen, D. R.; Solomon, K. V.; Prather, K. L., Synthetic metabolism: engineering biology at the protein and pathway scales, Chem. Biol., 16, 277 (2009)
[172] Lee, S. K.; Chou, H.; Ham, T. S.; Lee, T. S.; Keasling, J. D., Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels, Curr. Opin. Biotechnol., 19, 556 (2008)
[173] Saito, H.; Inoue, T., Synthetic biology with RNA motifs, Int. J. Biochem. Cell Biol., 41, 398 (2009)
[174] Brenner, K.; You, L.; Arnold, F. H., Engineering microbial consortia: a new frontier in synthetic biology, Trends Biotechnol., 26, 483 (2008)
[175] Channon, K.; Bromley, E. H.; Woolfson, D. N., Synthetic biology through biomolecular design and engineering, Curr. Opin. Struct. Biol., 18, 491 (2008)
[176] Becskei, A.; Serrano, L., Engineering stability in gene networks by autoregulation, Nature, 405, 590 (2000)
[177] Skerker, J. M.; Lucks, J. B.; Arkin, A. P., Evolution, ecology and the engineered organism: lessons for synthetic biology, Genome Biol., 10, 114 (2009)
[178] Atkinson, M. R.; Savageau, M. A.; Myers, J. T.; Ninfa, A. J., Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli, Cell, 113, 597 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.