×

Relaxing a large cosmological constant in the astrophysical domain. (English) Zbl 1274.83010

Summary: We study the problem of relaxing a large cosmological constant in the astrophysical domain through a dynamical mechanism based on a modified action of gravity previously considered by us at the cosmological level. We solve the model in the Schwarzschild-de Sitter metric for large and small astrophysical scales, and address its physical interpretation by separately studying the Jordan’s frame and Einstein’s frame formulations of it. In particular, we determine the extremely weak strength of fifth forces in our model and show that they are virtually unobservable. Finally, we estimate the influence that the relaxation mechanism may have on pulling apart the values of the two gravitational potentials \(\Psi(r)\) and \(\Phi(r)\) of the metric, as this implies a departure of the model from General Relativity and could eventually provide an observational test of the new framework at large astrophysical scales, e.g. through gravitational lensing.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C15 Exact solutions to problems in general relativity and gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology

References:

[1] DOI: 10.1103/RevModPhys.61.1 · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[2] DOI: 10.1088/0067-0049/192/2/18 · doi:10.1088/0067-0049/192/2/18
[3] DOI: 10.1086/378560 · doi:10.1086/378560
[4] DOI: 10.1086/383612 · Zbl 1369.85001 · doi:10.1086/383612
[5] DOI: 10.1103/RevModPhys.75.559 · Zbl 1205.83082 · doi:10.1103/RevModPhys.75.559
[6] DOI: 10.1016/S0370-1573(03)00120-0 · Zbl 1027.83544 · doi:10.1016/S0370-1573(03)00120-0
[7] Sahni V., Int. J. Mod. Phys. A 9 pp 373–
[8] Carroll S. M., Living Rev. Relativ. 4 pp 1– · Zbl 1023.83022 · doi:10.12942/lrr-2001-1
[9] DOI: 10.1142/S021827180600942X · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[10] DOI: 10.1016/j.physletb.2010.04.029 · doi:10.1016/j.physletb.2010.04.029
[11] DOI: 10.1016/j.physletb.2009.06.065 · doi:10.1016/j.physletb.2009.06.065
[12] DOI: 10.1016/j.physletb.2008.10.065 · doi:10.1016/j.physletb.2008.10.065
[13] Bauer F., J. Cosmol. Astropart. Phys. 1012 pp 030–
[14] DOI: 10.1103/PhysRevD.83.063514 · doi:10.1103/PhysRevD.83.063514
[15] DOI: 10.1103/PhysRevD.82.043519 · doi:10.1103/PhysRevD.82.043519
[16] DOI: 10.1103/PhysRevD.68.123512 · doi:10.1103/PhysRevD.68.123512
[17] Capozziello S., Recent Res. Dev. Astron. Astrophys. 1 pp 625–
[18] DOI: 10.1103/PhysRevD.70.043528 · doi:10.1103/PhysRevD.70.043528
[19] DOI: 10.1103/PhysRevD.71.063513 · doi:10.1103/PhysRevD.71.063513
[20] DOI: 10.1142/S0219887807001928 · Zbl 1112.83047 · doi:10.1142/S0219887807001928
[21] DOI: 10.1103/RevModPhys.82.451 · Zbl 1205.83006 · doi:10.1103/RevModPhys.82.451
[22] DOI: 10.1007/978-3-540-71013-4_14 · doi:10.1007/978-3-540-71013-4_14
[23] DOI: 10.1103/PhysRevD.75.083504 · doi:10.1103/PhysRevD.75.083504
[24] Appleby S. A., J. Cosmol. Astropart. Phys. 06 pp 005–
[25] DOI: 10.1103/PhysRevD.75.124014 · doi:10.1103/PhysRevD.75.124014
[26] DOI: 10.1016/j.physletb.2003.09.033 · Zbl 1029.83503 · doi:10.1016/j.physletb.2003.09.033
[27] DOI: 10.1016/j.physletb.2005.07.008 · doi:10.1016/j.physletb.2005.07.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.