×

Numerical characterization of three-dimensional bluff body shear layer behaviour. (English) Zbl 1460.76588

Summary: Three-dimensional bluff body aerodynamics are pertinent across a broad range of engineering disciplines. In three-dimensional bluff body flows, shear layer behaviour has a primary influence on the surface pressure distributions and, therefore, the integrated forces and moments. There currently exists a significant gap in understanding of the flow around canonical three-dimensional bluff bodies such as rectangular prisms and short circular cylinders. High-fidelity numerical experiments using a hybrid turbulence closure that resolves large eddies in separated wakes close this gap and provide new insights into the unsteady behaviour of these bodies. A time-averaging technique that captures the mean shear layer behaviours in these unsteady turbulent flows is developed, and empirical characterizations are developed for important quantities, including the shear layer reattachment distance, the separation bubble pressure, the maximum reattachment pressure, and the stagnation point location. Many of these quantities are found to exhibit a universal behaviour that varies only with the incidence angle and face shape (flat or curved) when an appropriate normalization is applied.

MSC:

76G25 General aerodynamics and subsonic flows
76Fxx Turbulence

Software:

Dirtlib; SUGGAR
Full Text: DOI

References:

[1] Anderson, W.; Rausch, R.; Bonhaus, D., Implicit/multigrid algorithms for incompressible turbulent flows on unstructured grids, J. Comput. Phys., 128, 2, 391-408, (1996) · Zbl 0862.76045 · doi:10.1006/jcph.1996.0219
[2] Ayoub, A.; Karamcheti, K., An experiment on the flow past a finite circular cylinder at high subcritical and supercritical Reynolds numbers, J. Fluid Mech., 118, 1-26, (1982) · doi:10.1017/S0022112082000937
[3] Biedron, R. T., Vatsa, V. N. & Atkins, H. L.2005Simulation of unsteady flows using an unstructured Navier-Stokes solver on moving and stationary grids. In Proceedings of the 23rd AIAA Applied Aerodynamics Conference, Toronto, Ontario, Canada.
[4] Chorin, A., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 1, 12-26, (1967) · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[5] Cicolani, L., Lusardi, J., Greaves, L., Robinson, D., Rosen, A. & Raz, R.2010 Flight test results for the motions and aerodynamics of a cargo container and a cylindrical slung load. Tech. Rep. NASA/TP2010-216380. National Aeronautics and Space Administration.
[6] Cicolani, L. S.; Cone, A.; Theron, J.; Robinson, D.; Lusardi, J.; Tischler, M. B.; Rosen, A.; Raz, R., Flight test and simulation of a cargo container slung load in forward flight, J. Am. Helicopter Soc., 54, 3, 1-18, (2009)
[7] Greenwell, D. I., Modelling of static aerodynamics of helicopter underslung loads, Aeronaut. J., 115, 1166, 201-219, (2011) · doi:10.1017/S0001924000005650
[8] Haller, G., An objective definition of a vortex, J. Fluid Mech., 525, 1-26, (2005) · Zbl 1065.76031 · doi:10.1017/S0022112004002526
[9] Hodara, J., Lind, A. H., Jones, A. R. & Smith, M. J.2016Collaborative investigation of the aerodynamic behavior of airfoils in reverse flow. J. Am. Helicopter Soc.61 (3), July 2016 (in press).
[10] Hodara, J. & Smith, M. J.2015Improved turbulence and transition closures for separated flows. In 41st European Rotorcraft Forum, Munich, Germany. Curran Associates Inc.
[11] Hoerner, S. F., Fluid-Dynamic Drag, (1958), Hoerner Fluid Dynamics
[12] Kim, W.-W.; Menon, S., An unsteady incompressible Navier-Stokes solver for large eddy simulation of turbulent flows, Intl J. Numer. Meth. Fluids, 31, 6, 983-1017, (1999) · Zbl 0964.76033 · doi:10.1002/(SICI)1097-0363(19991130)31:6<983::AID-FLD908>3.0.CO;2-Q
[13] Liggett, N.; Smith, M. J., Temporal convergence criteria for time-accurate viscous simulations of separated flows, Comput. Fluids, 66, 140-156, (2012) · Zbl 1365.76099 · doi:10.1016/j.compfluid.2012.06.010
[14] Lynch, C. E.; Smith, M. J., Extension and exploration of a hybrid turbulence model on unstructured grids, AIAA J., 49, 11, 2585-2590, (2011)
[15] Mantri, R., Raghav, V., Komerath, N. & Smith, M. J.2011Stability prediction of sling load dynamics using wind tunnel models. In Proceedings of the 67th American Helicopter Society Annual Forum, Virginia Beach, Virginia. Curran Associates Inc.
[16] Matsumoto, M.; Ishizaki, H.; Matsuoka, C.; Daito, Y.; Ichikawa, Y.; Shimahara, A., Aerodynamic effects of the angle of attack on a rectangular prism, J. Wind Engng Ind. Aerodyn., 77-78, 7-8, 531-542, (1998) · doi:10.1016/S0167-6105(98)00170-6
[17] Menter, F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 8, 598-605, (1994)
[18] Menter, F. R.; Kuntz, M.; Langtry, R., Ten years of industrial experience with the SST turbulence model, Turbul. Heat Mass Transfer, 4, 625-632, (2003)
[19] Noack, R.2005aDiRTlib: a library to add an overset capability to your flow solver. In 17th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.
[20] Noack, R.2005bSUGGAR: a general capability for moving body overset grid assembly. In 17th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.
[21] Norberg, C., Flow around rectangular cylinders: pressure forces and wake frequencies, J. Wind Engng Ind. Aerodyn., 49, 1-3, 187-196, (1993) · doi:10.1016/0167-6105(93)90014-F
[22] Prosser, D. T.2015 Advanced computational techniques for unsteady aerodynamic-dynamic interactions of bluff bodies. PhD thesis, Georgia Institute of Technology, Atlanta, Georgia.
[23] Prosser, D. T. & Smith, M. J.2014Three-dimensional bluff body aerodynamics and its importance for helicopter sling loads. In Proceedings of the 40th European Rotorcraft Forum, Southampton, UK. Curran Associates Inc.
[24] Prosser, D. T.; Smith, M. J., A physics-based reduced-order aerodynamics model for bluff bodies in unsteady, arbitrary motion, J. Am. Helicopter Soc., 60, 3, 1-15, (2015) · doi:10.4050/JAHS.60.032012
[25] Prosser, D. T. & Smith, M. J.2015bAerodynamics of finite cylinders in quasi-steady flow. In 53rd AIAA Aerospace Sciences Meeting and Exhibit, Kissimmee, Florida.
[26] Raz, R.; Rosen, A.; Carmeli, A.; Lusardi, J.; Cicolani, L. S.; Robinson, L. D., Wind tunnel and flight evaluation of passive stabilization of a cargo container slung load, J. Am. Helicopter Soc., 55, 3, 1-18, (2010)
[27] Raz, R.; Rosen, A.; Cicolani, L. S.; Lusardi, J., Using wind tunnel tests for slung-load clearance. Part 1: the CONEX cargo container, J Am. Helicopter Soc., 59, 4, 1-12, (2014)
[28] Raz, R., Rosen, A., Cicolani, L. S., Lusardi, J., Gassaway, B. & Thompson, T.2011Using wind tunnel tests for slung loads clearance. In Proceedings of the 67th American Helicopter Society Annual Forum, Virginia Beach, Virginia. Curran Associates Inc.
[29] Robertson, J. M.; Wedding, J. B.; Peterka, J. A.; Cermak, J. E., Wall pressures of separation – reattachment flow on a square prism in uniform flow, J. Wind Engng Ind. Aerodyn., 2, 4, 345-359, (1978) · doi:10.1016/0167-6105(78)90019-3
[30] Rosen, A., Cecutta, S. & Yaffe, R.1999 Wind tunnel tests of cube and CONEX models. Tech. Rep. TAE 844. Technion - Institute of Technology, Faculty of Aerospace Engineering.
[31] Sánchez-Rocha, M., Kirtas, M. & Menon, S.2006Zonal hybrid RANS-LES method for static and oscillating airfoils and wings. In 4th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.
[32] Sánchez-Rocha, M.; Menon, S., The compressible hybrid RANS/LES formulation using an additive operator, J. Comput. Phys., 228, 6, 2037-2062, (2009) · Zbl 1280.76013 · doi:10.1016/j.jcp.2008.11.021
[33] Sánchez-Rocha, M.; Menon, S., An order-of-magnitude approximation for the hybrid terms in the compressible hybrid RANS/LES governing equations, J. Turbul., 12, 16, 1-22, (2011)
[34] Shenoy, R.; Holmes, M.; Smith, M. J.; Komerath, N., Scaling evaluations on the drag of a hub system, J. Am. Helicopter Soc., 58, 3, 1-13, (2013) · doi:10.4050/JAHS.58.032002
[35] Shenoy, R. & Smith, M. J.2011Unstructured overset grid adaptation for rotorcraft aerodynamic interactions. In Proceedings of the 67th American Helicopter Society Annual Forum, Virginia Beach, Virginia. Curran Associates Inc.
[36] Shenoy, R.; Smith, M.; Park, M., Unstructured overset mesh adaptation with turbulence modeling for unsteady aerodynamic interactions, AIAA J. Aircraft, 51, 1, 161-174, (2014) · doi:10.2514/1.C032195
[37] Smith, M., Cook, J., Sánchez-Rocha, M., Shenoy, R. & Menon, S.2013Improved prediction of complex rotorcraft aerodynamics. In Proceedings of the 69th American Helicopter Society Annual Forum, Phoenix, Arizona.
[38] Smith, M. J.; Liggett, N. D.; Koukol, B. C. G., Aerodynamics of airfoils at high and reverse angles of attack, AIAA J. Aircraft, 48, 6, 2012-2023, (2011) · doi:10.2514/1.C031428
[39] Theron, J. N., Duque, E. P. N., Cicolani, L. & Halsey, R.2005Three-dimensional computational fluid dynamics investigation of a spinning helicopter slung load. In 31st European Rotorcraft Forum, Florence, Italy.
[40] Theron, J. N., Gordon, R., Rosen, A., Cicolani, L., Duque, E. P. N. & Halsey, R. H.2006Simulation of helicopter slung load aerodynamics: wind tunnel validation of two computational fluid dynamics codes. In AIAA 36th Fluid Dynamics Conference and Exhibit, San Francisco, CA, pp. 1-14.
[41] Vinuesa, R.; Schlatter, P.; Malm, J.; Mavriplis, C.; Henningson, D. S., Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions, J. Turbul., 16, 555-587, (2015) · doi:10.1080/14685248.2014.989232
[42] Wieselsberger, C.1922Further data on the law of liquid and air drag. Physik. Z.23, 219-224 (in German); reprinted in Zdravkovich (2003a).
[43] Zdravkovich, M. M., Flow Around Circular Cylinders. Vol. 2: Applications, (2003), Oxford University Press · Zbl 0882.76004
[44] Zdravkovich, M. M., Flow Around Circular Cylinders. Vol. 1: Fundamentals, (2003), Oxford University Press · Zbl 0882.76004
[45] Zdravkovich, M. M.; Brand, V. P.; Mathew, G.; Weston, A., Flow past short cylinders with two free ends, J. Fluid Mech., 203, 557-575, (1989) · doi:10.1017/S002211208900159X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.