×

Synchronous monitoring of \(\gamma, \beta \)-background and atmospheric precipitations in geophysical observatories of IMCES SB RAS and BEC IAO SB RAS. (Russian. English summary) Zbl 1474.86012

Summary: A synchronous experiment to study the dynamics of radiation quantities in various conditions: the urban environment and open countryside was carried out in August-September 2020. Every minute measurements of the ambient dose equivalent rate of \(\gamma \)-radiation, \( \beta \)-radiation flux density were made at 1 m height in the territories of the IMCES SB RAS geophysical observatory and at the BEC station of IAO SB RAS. Both monitoring points were equipped with OPTIOS optical rain gauges. The main purpose of the study was to study the differences in the response of the \(\beta \)- and \(\gamma \)-radiation background to liquid atmospheric precipitation inside the urban environment and in open areas, far from urban infrastructure and forests. It has been proven that monitoring point located within the city adequately reflects the meteorological situation, at least within a radius of 3 km.

MSC:

86A10 Meteorology and atmospheric physics

References:

[1] Edinaya gosudarstvennaya avtomatizirovannaya sistema monitoringa radiatsionnoi obstanovki na territorii Rossiiskoi Federatsii
[2] EPA’s Nationwide Environmental Radiation Monitoring
[3] Measuring stations in Germany
[4] European Radiological Data Exchange Platform
[5] Takeuchi N., Katase A. “Rainout-washout model for variation of environmental gamma-ray intensity by precipitation”, Journal of Nuclear Science and Technology, 1982, no. 19(5), 393-409
[6] EURADOS Report, Radiation Protection 106, 1999
[7] Lebedyte M., Butkus D., Morkūnas G., “Variations of the ambient dose equivalent rate in the ground level air”, Journal of environmental radioactivity, 2003, no. 64(1), 45-57 · doi:10.1016/S0265-931X(02)00057-7
[8] Beck H. L., “Gamma radiation from radon daughters in the atmosphere”, Journal of Geophysical Research, 1974, no. 79(15), 2215-2221 · doi:10.1029/JC079i015p02215
[9] Datar G., Vichare G., Raghav A., Bhaskar A., Sinha A. K., Nair K. U., “Response of Gamma-Ray Spectrum During Ockhi Cyclone”, Front. Earth Sci., 8:15 · doi:10.3389/feart.2020.00015
[10] Mercier J. F., Tracy B. L., d’Amours R., Chagnon F., Hoffman I., Korpach E. P., Ungar R. K., “Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass”, Journal of environmental radioactivity, 100(7) (2009), 527-533 · doi:10.1016/j.jenvrad.2009.03.002
[11] Fujinami N., Watanabe T., Tsutsui T., “Looping variation of correlation between radon progeny concentration and dose rate in outdoor air”, In Radioactivity in the Environment, 7 (2005), 284-289 · doi:10.1016/S1569-4860(04)07031-7
[12] Hiemstra P. H., Pebesma E. J., Heuvelink G. B., Twenhöfel C. J., “Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands”, Science of the total environment, 409(1) (2010), 123-133 · doi:10.1016/j.scitotenv.2010.08.051
[13] Burnett J. L., Croudace I. W., Warwick P. E., “Short-lived variations in the background gamma-radiation dose”, Journal of Radiological Protection, 30(3) (2010), 525 · doi:10.1088/0952-4746/30/3/007
[14] Liu H., Daisuke K., Motokiyo M., Hirao S., Moriizumi J., Yamazawa H. “On the characteristics of the wet deposition process using radon as a tracer gas”, Radiation protection dosimetry, 160(1-3) (2014), 83-86 · doi:10.1093/rpd/ncu093
[15] Livesay R. J., Blessinger C. S., Guzzardo, T. F., Hausladen P. A., “Rain-induced increase in background radiation detected by Radiation Portal Monitors”, Journal of environmental radioactivity, 137 (2014), 137-141 · doi:10.1016/j.jenvrad.2014.07.010
[16] Barbosa S. M., Miranda P., Azevedo E. B., “Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores)”, Journal of environmental radioactivity, 172 (2017), 218-231 · doi:10.1016/j.jenvrad.2017.03.027
[17] Takeyasu M., Iida T., Tsujimoto T., Yamasaki K., Ogawa Y., “Concentrations and their ratio of 222Rn decay products in rainwater measured by gamma-ray spectrometry using a low-background Ge detector”, Journal of environmental radioactivity, 88(1) (2006), 74-89 · doi:10.1016/j.jenvrad.2006.01.001
[18] Fujinami N., “Observational study of the scavenging of radon daughters by precipitation from the atmosphere”, Environment International, 22 (1996), 181-185 · doi:10.1016/S0160-4120(96)00106-7
[19] Yakovleva V. S., Nagorsky P. M., Cherepnev M. S., Kondratyeva A. G., Ryabkina K. S., “Effect of precipitation on the background levels of the atmospheric \(\beta \)-and \(\gamma \)-radiation”, Applied Radiation and Isotopes, 118 (2016), 190-195 · doi:10.1016/j.apradiso.2016.09.017
[20] Inomata Y., Chiba M., Igarashi Y., Aoyama M., Hirose K., “Seasonal and spatial variations of enhanced gamma ray dose rates derived from 222Rn progeny during precipitation in Japan”, Atmospheric Environment, 41(37) (2007), 8043-8057 · doi:10.1016/j.atmosenv.2007.06.046
[21] Bossew P., Cinelli G., Hernández-Ceballos M., Cernohlawek N., Gruber V., Dehandschutter B., Menneson F., Bleher M., Stöhlker U., Hellmann I., Weiler F., Tollefsen T., Tognoli P. V., De Cort M., “Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate”, Journal of Environmental Radioactivity, 166 (2016), 296-308 · doi:10.1016/j.jenvrad.2016.02.013
[22] Yamanishi H., Miyake H., “Separation of natural background by using correlation time-series data on radiation monitoring”, Journal of Nuclear Science and Technology, 40 (2003), 44-48 · doi:10.1080/18811248.2003.9715331
[23] Keller P. E., Kouzes R. T., “Influence of Extraterrestrial Radiation on Radiation Portal Monitors”, Nuclear Science, IEEE Transactions on Nuclear Science, 56 (2008), 1575-1583 · doi:10.1109/TNS.2009.2019618
[24] Knoll G., “Background and Detector Shielding”, Radiation Detection and Measurement, 2nd ed, John Wiley & Sons, New York, 1989, 714-719
[25] Terry I. R., “The Skyshine Benchmark Experiment Revisited”, Radiation Protection Dosimetry, 115 (2005), 538-541 · doi:10.1093/rpd/nci240
[26] Brunke E-G. et al., “Cape Point GAW station 222Rn detector: factors affecting sensitivity and accuracy”, Atmospheric Environment, 36 (2002), 2257-2262 · doi:10.1016/S1352-2310(02)00196-6
[27] Reuveni Y., Yair Y., Price C., Steinitz G., “Ground level gamma-ray and electric field enhancements during disturbed weather: Combined signatures from convective clouds, lightning and rain”, Atmospheric Research, 196 (2017) · doi:10.1016/j.atmosres.2017.06.012
[28] Kalchikhin V. V., Kobzev A. A., Korolkov V. A., Tikhomirov A. A., “Results of optical precipitation gage field tests”, Atmospheric and Oceanic Optics, 31(5) (2018), 545-547 · doi:10.1134/S102485601805007X
[29] Yakovleva V. S., Nagorskiy P. M., Yakovlev G. A., Zelinskiy A. S., Pustovalov K. N., Smirnov S. V., Belyayeva I. V., “Predvaritel”nyye rezul’taty analiza variatsiy beta-fona prizemnoy atmosfery, obuslovlennykh livnevymi osadkami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 31:2 (2020), 139-149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.