×

Convergence analysis of a highly accurate Nyström scheme for Fredholm integral equations. (English) Zbl 1441.65124

Summary: A stable and convergent Nyström scheme is proposed to solve Fredholm integral equations (FIEs). Our approximation is based on the barycentric rational interpolants. By introducing barycentric quadratures to the integral operator that appears in the FIE and modifying the standard Nyström scheme, we demonstrate that the new Nyström scheme is a viable option for the numerical solution of FIEs. Convergence rates of the method are proved taking into account the effect of grading the domain. The final convergence result shows clearly that one can choose an optimal domain grading. Numerical examples and comparisons with competitive methods of tunable accuracy are provided to support the theoretical analysis and illustrate the efficiency of the proposed numerical scheme.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations

Software:

Matlab
Full Text: DOI

References:

[1] d’ Almeida, F. D.; Fernandes, R., Projection methods based on grids for weakly singular integral equations, Appl. Numer. Math., 114, 47-54 (2017) · Zbl 1357.65329
[2] Assari, P.; Mehregana, F.; Dehghan, M., On the numerical solution of Fredholm integral equations utilizing the local radial basis function method, Int. J. Comput. Math., 96, 7, 1416-1443 (2019) · Zbl 1499.65739
[3] Atkinson, K. E., The numerical evaluation of fixed points for completely continuous operators, SIAM J. Numer. Anal., 10, 5, 799-807 (1973) · Zbl 0237.65040
[4] Atkinson, K. E., A survey of numerical methods for solving nonlinear integral equations, J. Integral Equ. Appl., 4, 1, 15-46 (1992) · Zbl 0760.65118
[5] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0899.65077
[6] Atkinson, K. E.; Bogomolny, A., The discrete Galerkin method for integral equations, Math. Comput., 48, 178, 595-616 (1987) · Zbl 0633.65134
[7] Atkinson, K. E.; Flores, J., The discrete Galerkin method for nonlinear integral equations, IMA J. Numer. Anal., 13, 195-213 (1993) · Zbl 0771.65090
[8] Atkinson, K. E.; Potra, F., Projection and iterated projection methods for nonlinear integral equations, SIAM J. Numer. Anal., 24, 1352-1373 (1987) · Zbl 0655.65146
[9] Atkinson, K. E.; Potra, F., The discrete collocation method for nonlinear integral equations, J. Integral Equ. Appl., 1, 1, 17-54 (1988) · Zbl 0664.65056
[10] Atkinson, K. E.; Shampine, L. F., Solving Fredholm integral equations of the second kind in Matlab, ACM Trans. Math. Softw., 34, 4, Article 21 pp. (2008), 20 pp · Zbl 1190.65192
[11] Aziza, I.; Siraj-ul-Islam, R.; Khan, F., A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math., 272, 70-80 (2014) · Zbl 1310.65162
[12] Babolian, E.; Bazm, S.; Lima, P., Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1164-1175 (2011) · Zbl 1221.65326
[13] Baltensperger, R.; Berrut, J.-P.; Noël, B., Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Compet., 68, 1109-1120 (1999) · Zbl 0920.65003
[14] Berrut, J.-P., Rational functions for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl., 15, 1-16 (1988) · Zbl 0646.65006
[15] Berrut, J.-P.; Klein, G., Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259, 95-107 (2014) · Zbl 1291.65036
[16] Berrut, J.-P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Rev., 46, 501-517 (2004) · Zbl 1061.65006
[17] Berrut, J.-P.; Baltensperger, R.; Mittelmann, H. D., Recent developments in barycentric rational interpolation, (de Bruin, M. G.; Mache, D. H.; Szabados, J., Trends and Applications in Constructive Approximation. Trends and Applications in Constructive Approximation, Internat. Ser. Numer. Math., vol. 151 (2005), Birkhäuser: Birkhäuser Basel), 27-51 · Zbl 1077.65009
[18] Berrut, J.-P.; Hosseini, S. A.; Klein, G., The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36, 1, A105-A123 (2014) · Zbl 1296.65190
[19] Bos, L.; De Marchi, S.; Hormann, K.; Klein, G., On the Lebesgue constant of barycentric rational interpolation at equidistant nodes, Numer. Math., 121, 461-471 (2012) · Zbl 1252.41003
[20] Brutman, L., Lebesgue functions for polynomial interpolation - a survey, Ann. Numer. Math., 4, 1-4, 111-127 (1997) · Zbl 0888.41001
[21] De Bonis, M. C.; Mastroianni, G., Projection methods and condition numbers in uniform norm for Fredholm and Cauchy singular integral equations, SIAM J. Numer. Anal., 44, 1, 1-24 (2006) · Zbl 1124.65122
[22] Driscoll, T. A., Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations, J. Comput. Phys., 229, 5980-5998 (2010) · Zbl 1195.65225
[23] Floater, M. S.; Hormann, K., Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107, 315-331 (2007) · Zbl 1221.41002
[24] Graham, I. G., Collocation methods for two dimensional weakly singular integral equations, J. Aust. Math. Soc. Ser. B, 22, 456-473 (1993) · Zbl 0469.65092
[25] Guoqiang, H.; Jiong, W., Extrapolation of Nyström solution for two dimensional nonlinear Fredholm integral equations, J. Comput. Appl. Math., 134, 1-2, 259-268 (2001) · Zbl 0989.65150
[26] Guoqiang, H.; Jiong, W., Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations, J. Comput. Appl. Math., 139, 49-63 (2002) · Zbl 1001.65142
[27] Hackbusch, W.; Sauter, S. A., On the efficient use of the Galerkin-method to solve Fredholm integral equations, Appl. Math., 38, 301-322 (1993) · Zbl 0791.65101
[28] Klein, G.; Berrut, J.-P., Linear barycentric rational quadrature, BIT Numer. Math., 52, 407-424 (2012) · Zbl 1247.65033
[29] Krasnoselskii, M., Topological Methods in the Theory of Nonlinear Integral Equations (1964), Macmillan: Macmillan New York · Zbl 0111.30303
[30] Laurita, C.; Mastroianni, G., Projection methods for Fredholm integral equations on the real semiaxis, J. Integral Equ. Appl., 21, 4, 559-596 (2009) · Zbl 1204.65155
[31] Liang, F.; Lin, F. R., A fast numerical solution method for two dimensional Fredholm integral equations of the second kind based on piecewise polynomial interpolation, Appl. Math. Comput., 216, 10, 3073-3088 (2010) · Zbl 1205.65337
[32] Liu, H.; Huang, J.; Pan, Y.; Zhang, J., Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equations, J. Comput. Appl. Math., 327, 141-154 (2018) · Zbl 1372.65346
[33] Mastroianni, G.; Milovanović, G. V.; Occorsio, D., Nyström method for Fredholm integral equations of the second kind in two variables on a triangle, Appl. Math. Comput., 219, 14, 7653-7662 (2013) · Zbl 1288.65189
[34] Mirzaei, D.; Dehghan, M., A meshless based method for solution of integral equations, Appl. Numer. Math., 60, 3, 245-262 (2010) · Zbl 1202.65174
[35] Occorsio, D.; Russo, M. G., Nyström methods for Fredholm integral equations using equispaced points, Filomat, 28, 1, 49-63 (2014) · Zbl 1474.65513
[36] Rusak, V. N.; Grib, N. V., Rational interpolation and approximate solution of integral equations, Differ. Uravn.. Differ. Uravn., Differ. Equ., 48, 2, 275-282 (2012), translation in · Zbl 1247.65170
[37] Sloan, I., Quadrature methods for integral equations of the second kind over infinite intervals, Math. Compet., 36, 511-523 (1981) · Zbl 0475.65083
[38] Trefethen, L. N., Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50, 1, 67-87 (2008) · Zbl 1141.65018
[39] Waldvogel, J., Fast construction of the Fejér and Clenshaw-Curtis quadrature rules, BIT Numer. Math., 46, 195-202 (2006) · Zbl 1091.65028
[40] Weiss, R., On the approximation of fixed points of nonlinear compact operators, SIAM J. Numer. Anal., 11, 3, 550-553 (1974) · Zbl 0285.41019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.