×

Celestial operator product expansions and \(\mathrm{w}_{1+ \infty}\) symmetry for all spins. (English) Zbl 1521.81310

Summary: The operator product expansion of massless celestial primary operators of arbitrary spin is investigated. Poincaré symmetry is found to imply a set of recursion relations on the operator product expansion coefficients of the leading singular terms at tree-level in a holomorphic limit. The symmetry constraints are solved by an Euler beta function with arguments that depend simply on the right-moving conformal weights of the operators in the product. These symmetry-derived coefficients are shown not only to match precisely those arising from momentum-space tree-level collinear limits, but also to obey an infinite number of additional symmetry transformations that respect the algebra of \(\mathrm{w}_{1+ \infty}\). In tree-level minimally-coupled gravitational theories, celestial currents are constructed from light transforms of conformally soft gravitons and found to generate the action of \(\mathrm{w}_{1+ \infty}\) on arbitrary massless celestial primaries. Results include operator product expansion coefficients for fermions as well as those arising from higher-derivative non-minimal couplings of gluons and gravitons.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81U20 \(S\)-matrix theory, etc. in quantum theory
83C45 Quantization of the gravitational field
81U05 \(2\)-body potential quantum scattering theory
83E05 Geometrodynamics and the holographic principle

References:

[1] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] Pasterski, S.; Shao, S-H; Strominger, A., Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.065026
[3] Pasterski, S.; Shao, S-H, Conformal basis for flat space amplitudes, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.065022
[4] Pasterski, S.; Shao, S-H; Strominger, A., Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.085006
[5] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Semiclassical Virasoro symmetry of the quantum gravity \(\mathcal{S} \)-matrix, JHEP, 08, 058 (2014) · doi:10.1007/JHEP08(2014)058
[6] Kapec, D.; Mitra, P.; Raclariu, A-M; Strominger, A., 2D Stress Tensor for 4D Gravity, Phys. Rev. Lett., 119, 121601 (2017) · doi:10.1103/PhysRevLett.119.121601
[7] Cheung, C.; de la Fuente, A.; Sundrum, R., 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP, 01, 112 (2017) · Zbl 1373.81319 · doi:10.1007/JHEP01(2017)112
[8] Fotopoulos, A.; Taylor, TR, Primary Fields in Celestial CFT, JHEP, 10, 167 (2019) · Zbl 1427.81127 · doi:10.1007/JHEP10(2019)167
[9] Strominger, A., Asymptotic Symmetries of Yang-Mills Theory, JHEP, 07, 151 (2014) · Zbl 1333.81273 · doi:10.1007/JHEP07(2014)151
[10] He, T.; Mitra, P.; Strominger, A., 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, JHEP, 10, 137 (2016) · Zbl 1390.81630 · doi:10.1007/JHEP10(2016)137
[11] Nande, A.; Pate, M.; Strominger, A., Soft Factorization in QED from 2D Kac-Moody Symmetry, JHEP, 02, 079 (2018) · Zbl 1387.81375 · doi:10.1007/JHEP02(2018)079
[12] Fan, W.; Fotopoulos, A.; Taylor, TR, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP, 05, 121 (2019) · Zbl 1416.81150
[13] Pate, M.; Raclariu, A-M; Strominger, A., Conformally Soft Theorem in Gauge Theory, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.085017
[14] Nandan, D.; Schreiber, A.; Volovich, A.; Zlotnikov, M., Celestial Amplitudes: Conformal Partial Waves and Soft Limits, JHEP, 10, 018 (2019) · Zbl 1427.81143 · doi:10.1007/JHEP10(2019)018
[15] Donnay, L.; Puhm, A.; Strominger, A., Conformally Soft Photons and Gravitons, JHEP, 01, 184 (2019) · Zbl 1409.81116 · doi:10.1007/JHEP01(2019)184
[16] Himwich, E.; Strominger, A., Celestial current algebra from Low’s subleading soft theorem, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.065001
[17] Adamo, T.; Mason, L.; Sharma, A., Celestial amplitudes and conformal soft theorems, Class. Quant. Grav., 36, 205018 (2019) · Zbl 1478.81036 · doi:10.1088/1361-6382/ab42ce
[18] Puhm, A., Conformally Soft Theorem in Gravity, JHEP, 09, 130 (2020) · doi:10.1007/JHEP09(2020)130
[19] A. Guevara, Notes on Conformal Soft Theorems and Recursion Relations in Gravity, arXiv:1906.07810 [INSPIRE].
[20] Fotopoulos, A.; Stieberger, S.; Taylor, TR; Zhu, B., Extended BMS Algebra of Celestial CFT, JHEP, 03, 130 (2020) · Zbl 1435.83010 · doi:10.1007/JHEP03(2020)130
[21] Donnay, L.; Pasterski, S.; Puhm, A., Asymptotic Symmetries and Celestial CFT, JHEP, 09, 176 (2020) · Zbl 1454.81183 · doi:10.1007/JHEP09(2020)176
[22] Himwich, E.; Narayanan, SA; Pate, M.; Paul, N.; Strominger, A., The Soft \(\mathcal{S} \)-Matrix in Gravity, JHEP, 09, 129 (2020) · Zbl 1454.83039 · doi:10.1007/JHEP09(2020)129
[23] Fotopoulos, A.; Stieberger, S.; Taylor, TR; Zhu, B., Extended Super BMS Algebra of Celestial CFT, JHEP, 09, 198 (2020) · Zbl 1454.81226 · doi:10.1007/JHEP09(2020)198
[24] Banerjee, S.; Ghosh, S.; Paul, P., MHV graviton scattering amplitudes and current algebra on the celestial sphere, JHEP, 02, 176 (2021) · doi:10.1007/JHEP02(2021)176
[25] Banerjee, S.; Ghosh, S., MHV gluon scattering amplitudes from celestial current algebras, JHEP, 10, 111 (2021) · doi:10.1007/JHEP10(2021)111
[26] Pasterski, S.; Puhm, A., Shifting spin on the celestial sphere, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.086020
[27] Guevara, A.; Himwich, E.; Pate, M.; Strominger, A., Holographic symmetry algebras for gauge theory and gravity, JHEP, 11, 152 (2021) · Zbl 1521.81144 · doi:10.1007/JHEP11(2021)152
[28] S. Banerjee, S. Ghosh and S. S. Samal, Subsubleading soft graviton symmetry and MHV graviton scattering amplitudes, arXiv:2104.02546 [INSPIRE].
[29] Pasterski, S.; Puhm, A.; Trevisani, E., Celestial diamonds: conformal multiplets in celestial CFT, JHEP, 11, 072 (2021) · Zbl 1521.81324 · doi:10.1007/JHEP11(2021)072
[30] Pasterski, S.; Puhm, A.; Trevisani, E., Revisiting the conformally soft sector with celestial diamonds, JHEP, 11, 143 (2021) · Zbl 1521.81325 · doi:10.1007/JHEP11(2021)143
[31] Jiang, H., Celestial superamplitude in \(\mathcal{N} = 4\) SYM theory, JHEP, 08, 031 (2021) · Zbl 1469.81073 · doi:10.1007/JHEP08(2021)031
[32] A. Strominger, w_1+∞and the Celestial Sphere, arXiv:2105.14346 [INSPIRE].
[33] C.-M. Chang, Y.-t. Huang, Z.-X. Huang and W. Li, Bulk locality from the celestial amplitude, arXiv:2106.11948 [INSPIRE].
[34] Bern, Z.; Dixon, LJ; Perelstein, M.; Rozowsky, JS, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B, 546, 423 (1999) · Zbl 0953.83006 · doi:10.1016/S0550-3213(99)00029-2
[35] D. A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B552 (1999) 319 [hep-ph/9901201] [INSPIRE].
[36] Feige, I.; Schwartz, MD, Hard-Soft-Collinear Factorization to All Orders, Phys. Rev. D, 90, 105020 (2014) · doi:10.1103/PhysRevD.90.105020
[37] Pate, M.; Raclariu, A-M; Strominger, A.; Yuan, EY, Celestial operator products of gluons and gravitons, Rev. Math. Phys., 33, 2140003 (2021) · Zbl 07450891 · doi:10.1142/S0129055X21400031
[38] Banerjee, S.; Ghosh, S.; Gonzo, R., BMS symmetry of celestial OPE, JHEP, 04, 130 (2020) · Zbl 1436.83022 · doi:10.1007/JHEP04(2020)130
[39] Ebert, S.; Sharma, A.; Wang, D., Descendants in celestial CFT and emergent multi-collinear factorization, JHEP, 03, 030 (2021) · Zbl 1461.83057 · doi:10.1007/JHEP03(2021)030
[40] S. Banerjee, S. Ghosh and P. Paul, (Chiral) Virasoro invariance of the tree-level MHV graviton scattering amplitudes, arXiv:2108.04262 [INSPIRE].
[41] Bianchi, M.; He, S.; Huang, Y-t; Wen, C., More on Soft Theorems: Trees, Loops and Strings, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.065022
[42] Elvang, H.; Jones, CRT; Naculich, SG, Soft Photon and Graviton Theorems in Effective Field Theory, Phys. Rev. Lett., 118, 231601 (2017) · doi:10.1103/PhysRevLett.118.231601
[43] Laddha, A.; Mitra, P., Asymptotic Symmetries and Subleading Soft Photon Theorem in Effective Field Theories, JHEP, 05, 132 (2018) · doi:10.1007/JHEP05(2018)132
[44] A. Sharma, Ambidextrous light transforms for celestial amplitudes, arXiv:2107.06250 [INSPIRE].
[45] Li, Z-Z; Lin, H-H; Zhang, S-Q, Infinite Soft Theorems from Gauge Symmetry, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.045004
[46] Hamada, Y.; Shiu, G., Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities, Phys. Rev. Lett., 120, 201601 (2018) · doi:10.1103/PhysRevLett.120.201601
[47] Kravchuk, P.; Simmons-Duffin, D., Light-ray operators in conformal field theory, JHEP, 11, 102 (2018) · Zbl 1404.81234 · doi:10.1007/JHEP11(2018)102
[48] Atanasov, A.; Melton, W.; Raclariu, A-M; Strominger, A., Conformal block expansion in celestial CFT, Phys. Rev. D, 104, 126033 (2021) · doi:10.1103/PhysRevD.104.126033
[49] A. Guevara, Celestial OPE blocks, arXiv:2108.12706 [INSPIRE].
[50] A. Atanasov, A. Ball, W. Melton, A.-M. Raclariu and A. Strominger, (2, 2) Scattering and the celestial torus, JHEP07 (2021) 083 [arXiv:2101.09591] [INSPIRE].
[51] Barnich, G., Centrally extended BMS4 Lie algebroid, JHEP, 06, 007 (2017) · Zbl 1380.83244 · doi:10.1007/JHEP06(2017)007
[52] H. Jiang, Holographic Chiral Algebra: Supersymmetry, Infinite Ward Identities, and EFTs, arXiv:2108.08799 [INSPIRE].
[53] Stieberger, S.; Taylor, TR, Symmetries of Celestial Amplitudes, Phys. Lett. B, 793, 141 (2019) · Zbl 1421.81154 · doi:10.1016/j.physletb.2019.03.063
[54] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, 181602 (2005) · doi:10.1103/PhysRevLett.94.181602
[55] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[56] Crawley, E.; Miller, N.; Narayanan, SA; Strominger, A., State-operator correspondence in celestial conformal field theory, JHEP, 09, 132 (2021) · Zbl 1472.83081 · doi:10.1007/JHEP09(2021)132
[57] Banerjee, S.; Pandey, P.; Paul, P., Conformal properties of soft operators: Use of null states, Phys. Rev. D, 101, 106014 (2020) · doi:10.1103/PhysRevD.101.106014
[58] S. Banerjee and P. Pandey, Conformal properties of soft-operators. Part II. Use of null-states, JHEP02 (2020) 067 [arXiv:1906.01650] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.