×

MHD mixed convection micropolar fluid flow through a rectangular duct. (English) Zbl 1427.76268

Summary: Mixed convection flow through a rectangular duct with at least one of the sides of the walls of the rectangle being isothermal under the influence of transversely applied magnetic field has been analyzed numerically in this study. The governing differential equations of the problem have been transformed into a system of nondimensional differential equations and then solved numerically. The dimensionless velocity, microrotation components, and temperature profiles are displayed graphically showing the effects of various values of the parameters present in the problem. The results showed that the flow field is notably influenced by the considered parameters. It is found that increasing the aspect ratio increases flow reversal, commencement of the flow reversal is observed after some critical value, and the applied magnetic field increases the flow reversal in addition to flow retardation. The microrotation components flow in opposite direction; also it is found that one component of the microrotation will show no rotational effect around the center of the duct.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Eringen, A. C., Microcontinuum Field Theories I: Foundations and Solids (1999), New York, NY, USA: Springer-Verlag, New York, NY, USA · Zbl 0953.74002
[2] Eringen, A. C., Microcontinuum Field Theories-II: Fluent Media (2001), New York, NY, USA: Springer, New York, NY, USA · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[3] Axtell, N. K.; Park, M.; Cushman, J. H., Micromorphic fluid in an elastic porous body: blood flow in tissues with microcirculation, International Journal for Multiscale Computational Engineering, 3, 1, 71-84 (2005) · doi:10.1615/IntJMultCompEng.v3.i1.60
[4] Ansari, R.; Bazdid-Vahdati, M.; Shakouri, A.; Norouzzadeh, A.; Rouhi, H., Micromorphic first-order shear deformable plate element, Meccanica, 51, 8, 1797-1809 (2016) · Zbl 1388.74078 · doi:10.1007/s11012-015-0325-7
[5] Lee, J. D.; Wang, X., Generalized micromorphic solids and fluids, International Journal of Engineering Science, 49, 12, 1378-1387 (2011) · Zbl 1423.74275 · doi:10.1016/j.ijengsci.2011.04.001
[6] Ansari, R.; Bazdid-Vahdati, M.; Shakouri, A. H.; Norouzzadeh, A.; Rouhi, H., Micromorphic prism element, Mathematics and Mechanics of Solids, 22, 6, 1438-1461 (2017) · Zbl 1371.74255 · doi:10.1177/1081286516637115
[7] Eringen, A. C., Simple microfluids, International Journal of Engineering Science, 2, 205-217 (1964) · Zbl 0136.45003 · doi:10.1016/0020-7225(64)90005-9
[8] Eringen, A. C., Theory of micropolar fluids, Journal of Applied Mathematics and Mechanics, 16, 1-18 (1966)
[9] Eringen, A. C., Theory of thermomicrofluids, Journal of Mathematical Analysis and Applications, 38, 2, 480-496 (1972) · Zbl 0241.76012 · doi:10.1016/0022-247X(72)90106-0
[10] Ariman, T.; Sylvester, N. D.; Turk, M. A., Applications of microcontinuum fluid mechanics, International Journal of Engineering Science, 12, 4, 273-293 (1974) · Zbl 0273.76003 · doi:10.1016/0020-7225(74)90059-7
[11] Eremeyev, V. A.; Lebedev, L. P.; Altenbach, H., Foundations of Micropolar Mechanics (2013), Springer Sci and Business Media · Zbl 1257.74002
[12] Barletta, A., Analysis of flow reversal for laminar mixed convection in a vertical rectangular duct with one or more isothermal walls, International Journal of Heat and Mass Transfer, 44, 18, 3481-3497 (2001) · Zbl 1005.76080 · doi:10.1016/S0017-9310(01)00016-3
[13] Ahmed, S. E., Numerical study of MHD natural convection in an inclined rectangular cavity with internal heat generation filled with a porous medium under the influence of joule heating, Latin American Applied Research, 43, 67-71 (2013)
[14] Spiga, M.; Morino, G. L., A symmetric solution for velocity profile in laminar flow through rectangular ducts, International Communications in Heat and Mass Transfer, 21, 4, 469-475 (1994) · doi:10.1016/0735-1933(94)90046-9
[15] Srnivasacharya, D.; Shiferaw, M., MHD flow of micropolar fluid in a rectangular duct with hall and ion slip effects, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 4, 313 (2008) · doi:10.1590/S1678-58782008000400007
[16] Chu, H. H. S.; Churchill, S. W.; Patterson, C. V. S., The effect of heater size, location, aspect ratio, and boundary conditions on two-dimensional, laminar, natural convection in rectangular channels, Journal of Heat Transfer, 98 (1976)
[17] Sayed-Ahmed, M. E.; Attia, H. A., The effect of Hall current on magnetohydrodynamic flow and heat transfer for Bingham fluids in a rectangular duct, Canadian Journal of Physics, 83, 6, 637-651 (2005) · doi:10.1139/p05-006
[18] Chou, F. C.; Hwang, G. J., Vorticity-velocity method for Graetz problem with the effect of natural convection in a horizontal rectangular channel with uniform wall heat flux, Journal of Heat Transfer, 109, 704-710 (1987)
[19] Ramakrishna, K.; Rubin, S. G.; Khosla, P. K., Laminar natural convection along vertical square ducts, Numer, Heat Transfer, 5, 59-79 (1982)
[20] Cheng, K. C.; Ou, J. W., Convection instability and finite amplitude convection in the entrance region of horizontal rectangular channels heated from below, Proceedings of 7th International Heat Transfer Conference, 2, 189-194 (1982)
[21] Aung, W.; Worku, G., Mixed convection in ducts with asymmetric wall heat fluxes, ASME Journal of Heat Transfer, 109, 947-951 (1987)
[22] Mahaney, H. V.; Incropera, F. P.; Ramadhyani, S., Development of laminar mixed convection flow in a horizontal rectangular duct with uniform bottom heating, Numerical Heat Transfer, Part B: Fundamentals, 12, 2, 137-155 (1987) · doi:10.1080/10407788708913578
[23] Abou-Ellail, M. M.; Morcos, S. M., Buoyancy effects in the entrance region of horizontal rectangular channels, Journal of Heat Transfer, 105, 924-928 (1983)
[24] Huang, C.-C.; Yan, W.-M.; Jang, J.-H., Laminar mixed convection heat and mass transfer in vertical rectangular ducts with film evaporation and condensation, International Journal of Heat and Mass Transfer, 48, 9, 1772-1784 (2005) · Zbl 1189.76485 · doi:10.1016/j.ijheatmasstransfer.2004.11.023
[25] Yan, W. M.; Lin, T. F., Effects of wetted wall on laminar mixed convection in a vertical channel, Journal of Thermophysics and Heat Transfer, 3, 1, 94-96 (1989) · doi:10.2514/3.56231
[26] Yan, W.-M., Turbulent mixed convection heat and mass transfer in a wetted channel, Journal of Heat Transfer, 117, 1, 229-233 (1995) · doi:10.1115/1.2822311
[27] Hayat, T.; Nadeem, S.; Asghar, S., Hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system, International Journal of Engineering Science, 42, 1, 65-78 (2004) · Zbl 1211.76144 · doi:10.1016/S0020-7225(03)00277-5
[28] Ansari, R.; Shakouri, A. H.; Bazdid-Vahdati, M.; Norouzzadeh, A.; Rouhi, H., A nonclassical finite element approach for the nonlinear analysis of micropolar plates, Journal of Computational and Nonlinear Dynamics, 12, 1 (2017) · Zbl 1371.74255 · doi:10.1115/1.4034678
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.