×

The self-gravitating gas in the presence of dark energy: Monte Carlo simulations and stability analysis. (English) Zbl 1126.83316

Summary: The self-gravitating gas in the presence of a positive cosmological constant \(\Lambda\) is studied in thermal equilibrium by Monte Carlo simulations and by the mean field approach. We find excellent agreement between both approaches already for \(N=1000\) particles on a volume \(V\) (the mean field is exact in the infinite \(N\) limit). The domain of stability of the gas is found to increase when the cosmological constant increases. The particle density is shown to be an increasing (decreasing) function of the distance when the dark energy dominates over self-gravity (and vice versa). We confirm the validity of the thermodynamic limit: \(N,V\rightarrow \infty\) with \(N/V^{1/3}\) and \(\Lambda V^{2/3}\) fixed. In such dilute limit extensive thermodynamic quantities like energy, free energy, entropy turn to be proportional to \(N\). We find that the gas is stable till the isothermal compressibility diverges. Beyond this point the gas becomes a extremely dense object whose properties are studied by Monte Carlo.

MSC:

83F05 Relativistic cosmology
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)

References:

[1] Peebles, P. J.E.; Ratra, B., Rev. Mod. Phys., 75, 559 (2003) · Zbl 1205.83082
[2] de Vega, H. J.; Sánchez, N., Nucl. Phys. B, 625, 409 (2002) · Zbl 1049.82518
[3] de Vega, H. J.; Sánchez, N., Nucl. Phys. B, 625, 460 (2002) · Zbl 1049.82519
[4] de Vega, H. J.; Siebert, J. A., Nucl. Phys. B, 707, 529 (2005) · Zbl 1160.83365
[5] Emden, R., Gaskugeln (1907), Teubner: Teubner Leipzig and Berlin · JFM 38.0952.02
[6] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1939), Chicago Univ. Press: Chicago Univ. Press Chicago, IL · Zbl 0022.19207
[7] Ebert, R., Z. Astrophys., 37, 217 (1955) · Zbl 0066.45303
[8] Bonnor, W. B., Mon. Not. R. Astron. Soc., 116, 351 (1956)
[9] Antonov, V. A., Vestnik Leningrad Univ., 7, 135 (1962)
[10] Lynden-Bell, D.; Wood, R., Mon. Not. R. Astron. Soc., 138, 495 (1968)
[11] Horwitz, G.; Katz, J., Astrophys. J., 222, 941 (1978)
[12] Padmanabhan, T., Phys. Rep., 188, 285 (1990) · Zbl 1211.82001
[13] Saslaw, W. C., Gravitational Physics of Stellar and Galactic Systems (1987), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[14] Jeans, J. H., Astronomy and Cosmogony (1919), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1156.85002
[15] Bertin, G.; Trenti, M., Astrophys. J., 584, 729 (2003)
[16] Binder, K.; Heerman, D. W., Monte Carlo Simulations in Statistical Physics, Springer Series in Solid State, vol. 80 (1988), Springer: Springer Berlin, See, for example · Zbl 0687.65004
[17] González Arroyo, A.; Ramos, A., JHEP, 0407, 008 (2004)
[18] Schmidt, B. P., (de Vega, H. J.; Khalatnikov, I. M.; Sánchez, N., Phase Transitions in the Early Universe: Theory and Observations. Phase Transitions in the Early Universe: Theory and Observations, NATO ASI Series II, vol. 40 (2001), Kluwer: Kluwer Dordrecht), See for a review
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.