×

The transverse vibration of Mindlin rectangular plates with internal elastic supports and arbitrary boundary supports. (English) Zbl 1517.74044

In this paper, the transverse vibrations of rectangular plates with internal rectangular supports and general elastically restrained boundary conditions are solved using the Rayleigh-Ritz technique using trigonometric functions as admissible functions. Four terms of sinusoidal auxiliary functions have been found to be adequate to get accurate numerical results. The authors states that accuracy of the current method is verified by comparing with the finite element calculation results and numerical solutions provided in previous studies, and a good agreement has been observed in these comparisons and the result converges faster when the number of auxiliary functions is four. For the trial function with four auxiliary functions, when the total truncation number is 12, the error of the first eight free vibration frequencies between the result of the program and FEM is within one percent. The total truncation number is selected as 16 to ensure higher accuracy in the subsequent calculation of each case. Extensive numerical results are presented for various combination of simply supported, clamped, elastic constraints and free boundary conditions along the edges. The data presented may be useful to civil engineers in design.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74S99 Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Gorman, DJ; Leissa, A., Free vibration analysis of rectangular plates, J. Appl. Mech., 49, 3, 683-683 (1982) · Zbl 0478.73037 · doi:10.1115/1.3162564
[2] Ferreira, AJM; Carrera, E.; Cinefra, M.; Viola, E.; Tornabene, F.; Fantuzzi, N.; Zenkour, AM, Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a Unified Formulation, Compos. Part. B-Eng., 58, 544-552 (2014) · doi:10.1016/j.compositesb.2013.10.088
[3] Wang, X.; Wang, Y., Buckling analysis of thin rectangular plates under uniaxial or biaxial compressive point loads by the differential quadrature method, Int. J. Mech. Sci., 101-102, 38-48 (2015) · doi:10.1016/j.ijmecsci.2015.07.021
[4] Chen, C-S, Nonlinear vibration of a shear deformable functionally graded plate, Compos. Struct., 68, 3, 295-302 (2005) · doi:10.1016/j.compstruct.2004.03.022
[5] Liew, KM; Zhao, X.; Ferreira, AJM, A review of meshless methods for laminated and functionally graded plates and shells, Compos. Struct., 93, 8, 2031-2041 (2011) · doi:10.1016/j.compstruct.2011.02.018
[6] Hosseini, S.; Rahimi, G.; Anani, Y., A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT, Eng. Anal. Bound. Elem., 125, 168-177 (2021) · Zbl 1464.74372 · doi:10.1016/j.enganabound.2020.12.016
[7] Fernandes, GR; Venturini, WS, Stiffened plate bending analysis by the boundary element method, Comput. Mech., 28, 3, 275-281 (2002) · Zbl 1076.74564 · doi:10.1007/s00466-001-0287-6
[8] Saadatpour, MM; Azhari, M.; Bradford, MA, Vibration analysis of simply supported plates of general shape with internal point and line supports using the Galerkin method, Eng. Struct., 22, 9, 1180-1188 (2000) · doi:10.1016/S0141-0296(99)00073-5
[9] Naghsh, A.; Azhari, M., Non-linear free vibration analysis of point supported laminated composite skew plates, Int. J. Nonlin. Mech., 76, 64-76 (2015) · doi:10.1016/j.ijnonlinmec.2015.05.008
[10] Watts, G.; Pradyumna, S.; Singha, MK, Free vibration analysis of non-rectangular plates in contact with bounded fluid using element free Galerkin method, Ocean. Eng., 160, 438-448 (2018) · doi:10.1016/j.oceaneng.2018.04.056
[11] Wang, X.; Xu, S., Free vibration analysis of beams and rectangular plates with free edges by the discrete singular convolution, J. Sound. Vib., 329, 10, 1780-1792 (2010) · doi:10.1016/j.jsv.2009.12.006
[12] Li, Y.; Zhou, M.; Li, M., Analysis of the free vibration of thin rectangular plates with cut-outs using the discrete singular convolution method, Thin. Wall. Struct., 147, 106529 (2020) · doi:10.1016/j.tws.2019.106529
[13] Liu, B.; Xing, YF; Eisenberger, M.; Ferreira, AJM, Thickness-shear vibration analysis of rectangular quartz plates by a numerical extended Kantorovich method, Compos. Struct., 107, 429-435 (2014) · doi:10.1016/j.compstruct.2013.08.021
[14] Moreno-García, P.; dos Santos, JVA; Lopes, H., A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates, Arch. Comput. Method. E., 25, 3, 785-815 (2017) · Zbl 1397.74077 · doi:10.1007/s11831-017-9214-7
[15] Zhou, D.; Ji, T., Free vibration of rectangular plates with internal column supports, J. Sound. Vib., 297, 1-2, 146-166 (2006) · doi:10.1016/j.jsv.2006.03.031
[16] Zhou, D.; Ji, T., Free vibration of rectangular plates with continuously distributed spring-mass, Int. J. Solids. Struct., 43, 21, 6502-6520 (2006) · Zbl 1120.74541 · doi:10.1016/j.ijsolstr.2005.12.005
[17] Chen, Y.; Jin, G.; Liu, Z., Flexural and in-plane vibration analysis of elastically restrained thin rectangular plate with cutout using Chebyshev-Lagrangian method, Int. J. Mech. Sci., 89, 264-278 (2014) · doi:10.1016/j.ijmecsci.2014.09.006
[18] Dozio, L.; Carrera, E., A variable kinematic Ritz formulation for vibration study of quadrilateral plates with arbitrary thickness, J. Sound. Vib., 330, 18-19, 4611-4632 (2011) · doi:10.1016/j.jsv.2011.04.022
[19] Wu, LH; Lu, Y., Free vibration analysis of rectangular plates with internal columns and uniform elastic edge supports by pb-2 Ritz method, Int. J. Mech. Sci., 53, 7, 494-504 (2011) · doi:10.1016/j.ijmecsci.2011.04.006
[20] Carrera, E.; Fazzolari, FA; Demasi, L., Vibration analysis of anisotropic simply supported plates by using variable kinematic and Rayleigh-Ritz method, J. Vib. Acoust., 133, 6, 061017 (2011) · doi:10.1115/1.4004680
[21] Pang, F.; Li, H.; Du, Y.; Li, S.; Chen, H.; Liu, N., A series solution for the vibration of Mindlin rectangular plates with elastic point supports around the edges, Shock. Vib., 2018, 1-21 (2018) · doi:10.1155/2018/8562079
[22] Zhou, D., Vibrations of point-supported rectangular plates with variable thickness usinga set of static tapered beam functions, Int. J. Mech. Sci., 44, 149-164 (2002) · Zbl 1125.74340 · doi:10.1016/S0020-7403(01)00081-9
[23] Li, WL, Vibration analysis of rectangular plates with general elastic boundary supports, J. Sound. Vib., 273, 3, 619-635 (2004) · doi:10.1016/S0022-460X(03)00562-5
[24] Li, WL; Zhang, X.; Du, J.; Liu, Z., An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports, J. Sound. Vib., 321, 1-2, 254-269 (2009)
[25] Du, J.; Li, WL; Jin, G.; Yang, T.; Liu, Z., An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges, J. Sound. Vib., 306, 3-5, 908-927 (2007) · doi:10.1016/j.jsv.2007.06.011
[26] Abrate, S., Vibration of point-supported rectangular composite plates, Compos. Sci. Technol., 53, 3, 325-332 (1995) · doi:10.1016/0266-3538(95)00004-6
[27] Lee, LT; Lee, DC, Free vibration of rectangular plates on elastic point supports with the application of a new type of admissible function, Comput. Struct., 65, 2, 149-156 (1997) · Zbl 0918.73035 · doi:10.1016/S0045-7949(96)00426-9
[28] Gorman, DJ, Free vibration analysis of mindlin plates with uniform elastic edge support by the superposition method, J. Sound. Vib., 207, 3, 335-350 (1997) · doi:10.1006/jsvi.1997.1107
[29] Gorman, DJ, Accurate free vibration analysis of point supported mindlin plates by the superposition method, J. Sound. Vib., 219, 2, 265-277 (1999) · Zbl 1235.74071 · doi:10.1006/jsvi.1998.1874
[30] Singhal, RK; Gorman, DJ, Free vibration of partially clamped rectangular plates with and without rigid point supports, J. Sound. Vib., 203, 181-192 (1997) · doi:10.1006/jsvi.1996.0878
[31] Narita, Y.; Hodgkinson, JM, Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates, Compos. Struct., 69, 2, 127-135 (2005) · doi:10.1016/j.compstruct.2004.05.021
[32] Huang, M.; Ma, XQ; Sakiyama, T.; Matsuda, H.; Morita, C., Free vibration analysis of rectangular plates with variable thickness and point supports, J. Sound. Vib., 300, 3-5, 435-452 (2007) · doi:10.1016/j.jsv.2005.01.059
[33] Lopatin, AV; Morozov, EV, Fundamental frequency of an orthotropic rectangular plate with an internal centre point support, Compos. Struct., 93, 10, 2487-2495 (2011) · doi:10.1016/j.compstruct.2011.04.004
[34] Li, R.; Tian, Y.; Zheng, X.; Wang, H.; Xiong, S.; Wang, B., New analytic bending solutions of rectangular thin plates with a corner point-supported and its adjacent corner free, Eur. J. Mech. A-Solid., 66, 103-113 (2017) · Zbl 1406.74443 · doi:10.1016/j.euromechsol.2017.06.009
[35] Li, R.; Tian, Y.; Wang, P.; Shi, Y.; Wang, B., New analytic free vibration solutions of rectangular thin plates resting on multiple point supports, Int. J. Mech. Sci., 110, 53-61 (2016) · doi:10.1016/j.ijmecsci.2016.03.002
[36] Li, R.; Wang, B.; Li, P., Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported, Int. J. Mech. Sci., 85, 212-218 (2014) · doi:10.1016/j.ijmecsci.2014.05.004
[37] Xu, C.; Qu, J.; Rong, D.; Zhou, Z.; Leung, AYT, Theory and modeling of a novel class of nanoplate-based mass sensors with corner point supports, Thin. Wall. Struct., 159, 107306 (2021) · doi:10.1016/j.tws.2020.107306
[38] Ohya, F.; Ueda, M.; Uchiyama, T.; Kikuchi, M., Free vibration analysis by the superposition method of rectangular Mindlin plates with internal columns resting on uniform elastic edge supports, J. Sound. Vib., 289, 1-2, 1-24 (2006) · Zbl 1243.74107 · doi:10.1016/j.jsv.2005.01.030
[39] Huang, MH; Thambiratnam, DP, Free vibration analysis of rectangular plates on elastic intermediate supports, J. Sound. Vib., 240, 3, 567-580 (2001) · doi:10.1006/jsvi.2000.3239
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.