×

Phase coherence of the electron and hole in a metallic film in proximity with a superconductor. (English) Zbl 1108.82349

Summary: The scattering matrix approach is applied to the study of tunneling spectra in a metallic film in proximity with a superconductor. The abnormal minigap in tunneling conductance is attributed to the phase coherence of electrons and Andreev-reflected holes in the metallic film. The coherent transport in the metal leads to a fully opened minigap, whose width decreases with increase in the metallic film thickness, while the sequential component results in non-zero densities of states within the minigap. The calculated results provide a reasonable explanation for abnormal minigap behavior observed in recent experiments.

MSC:

82D55 Statistical mechanics of superconductors
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI

References:

[1] G. Deutscher and P. G. de Gennes, Superconductivity, ed. R. D. Parks (Marcel Dekker, New York, 1969) p. 1005.
[2] DOI: 10.1103/PhysRevLett.77.3025 · doi:10.1103/PhysRevLett.77.3025
[3] DOI: 10.1103/PhysRevLett.77.924 · doi:10.1103/PhysRevLett.77.924
[4] DOI: 10.1103/PhysRevB.58.15128 · doi:10.1103/PhysRevB.58.15128
[5] DOI: 10.1103/PhysRevLett.83.1014 · doi:10.1103/PhysRevLett.83.1014
[6] DOI: 10.1103/PhysRevB.63.165420 · doi:10.1103/PhysRevB.63.165420
[7] DOI: 10.1209/epl/i2001-00361-2 · doi:10.1209/epl/i2001-00361-2
[8] DOI: 10.1103/PhysRevLett.86.284 · doi:10.1103/PhysRevLett.86.284
[9] DOI: 10.1103/PhysRevLett.93.257001 · doi:10.1103/PhysRevLett.93.257001
[10] DOI: 10.1103/PhysRevB.18.1076 · doi:10.1103/PhysRevB.18.1076
[11] DOI: 10.1103/PhysRevB.18.3174 · doi:10.1103/PhysRevB.18.3174
[12] DOI: 10.1103/PhysRevB.35.6762 · doi:10.1103/PhysRevB.35.6762
[13] Golubov A. A., J. Low. Temp. Phys. 61 pp 83–
[14] DOI: 10.1103/PhysRevB.47.11263 · doi:10.1103/PhysRevB.47.11263
[15] DOI: 10.1103/PhysRevB.54.9443 · doi:10.1103/PhysRevB.54.9443
[16] DOI: 10.1103/PhysRevB.58.5783 · doi:10.1103/PhysRevB.58.5783
[17] DOI: 10.1103/PhysRevB.62.5353 · doi:10.1103/PhysRevB.62.5353
[18] DOI: 10.1103/PhysRevB.62.12462 · doi:10.1103/PhysRevB.62.12462
[19] DOI: 10.1023/A:1004635226825 · doi:10.1023/A:1004635226825
[20] DOI: 10.1103/PhysRevB.65.014509 · doi:10.1103/PhysRevB.65.014509
[21] DOI: 10.1103/PhysRevLett.86.874 · doi:10.1103/PhysRevLett.86.874
[22] DOI: 10.1103/PhysRevLett.88.077002 · doi:10.1103/PhysRevLett.88.077002
[23] DOI: 10.1103/PhysRevB.66.224516 · doi:10.1103/PhysRevB.66.224516
[24] Hara J., Physica B 323 pp 1433–
[25] DOI: 10.1103/PhysRevB.69.214407 · doi:10.1103/PhysRevB.69.214407
[26] DOI: 10.1103/PhysRevB.69.104514 · doi:10.1103/PhysRevB.69.104514
[27] DOI: 10.1103/PhysRevLett.93.137001 · doi:10.1103/PhysRevLett.93.137001
[28] Andreev A. F., Sov. Phys. JEPT 19 pp 1228–
[29] DOI: 10.1103/RevModPhys.76.411 · doi:10.1103/RevModPhys.76.411
[30] DOI: 10.1017/CBO9780511805776 · doi:10.1017/CBO9780511805776
[31] de Gennes P. G., Superconductivity of Metals and Alloys (1966) · Zbl 0138.22801
[32] DOI: 10.1103/PhysRevB.25.4515 · doi:10.1103/PhysRevB.25.4515
[33] DOI: 10.1103/RevModPhys.69.731 · doi:10.1103/RevModPhys.69.731
[34] DOI: 10.1103/PhysRev.175.559 · doi:10.1103/PhysRev.175.559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.