×

Generation of microwave-optics entanglement via reservoir engineering in cavity magnonic systems. (English) Zbl 1540.81029

Summary: The strong microwave-optics entanglement is generated based on a cavity magnonic hybrid quantum system, where the magnon mode couples to the microwave cavity mode via magnetic dipole interaction and interacts with the optical modes via magneto-optical effects. It is shown that the microwave-optics entanglement can be achieved by the intermediate magnon mode acting as an engineered reservoir to cool the Bogoliubov mode, which consists of an optical mode and a microwave cavity mode. By optimizing the ratio of effective couplings and the dissipation of the magnon mode, the strong microwave-optics entanglement is obtained, which is far larger than that based on the coherent parametric coupling. The microwave-optics entanglement created in our model is that between microwave mode and polarized optical mode. Such entanglement which involves the degrees of freedom of polarization may have potential applications in polarization-dependent quantum information tasks.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
78A40 Waves and radiation in optics and electromagnetic theory
90B05 Inventory, storage, reservoirs
68N30 Mathematical aspects of software engineering (specification, verification, metrics, requirements, etc.)
81R30 Coherent states
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
Full Text: DOI

References:

[1] Barzanjeh, S.; Guha, S.; Weedbrook, C.; Vitali, D.; Shapiro, J. H.; Pirandola, S., Microwave quantum illumination. Phys. Rev. Lett. (2015)
[2] Cai, Q.; Liao, J.; Shen, B.; Guo, G.; Zhou, Q., Microwave quantum illumination via cavity magnonics. Phys. Rev. A (2021)
[3] Zhong, C.; Wang, Z.; Zou, C.; Zhang, M.; Han, X.; Fu, W.; Xu, M.; Shankar, S.; Devoret, M. H.; Tang, H. X.; Jiang, L., Proposal for heralded generation and detection of entangled microwave-optical-photon pairs. Phys. Rev. Lett. (2020)
[4] Krastanov, S.; Raniwala, H.; Holzgrafe, J.; Jacobs, K.; Lončar, M.; Reagor, M. J.; Englund, D. R., Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett. (2021)
[5] Gisin, N.; Thew, R., Quantum communication. Nat. Photonics, 3, 165-171 (2007)
[6] Barzanjeh, S.; Abdi, M.; Milburn, G. J.; Tombesi, P.; Vitali, D., Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. (2012)
[7] Barzanjeh, S.; Vitali, D.; Tombesi, P.; Milburn, G. J., Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A (2011)
[8] Tsang, M., Cavity quantum electro-optics. Phys. Rev. A (2010)
[9] Bagci, T.; Simonsen, A.; Schmid, S.; Villanueva, L. G.; Zeuthen, E.; Appel, J.; Taylor, J. M.; Sørensen, A.; Usami, K.; Schliesser, A.; Polzik, E. S., Optical detection of radio waves through a nanomechanical transducer. Nature, 7490, 81-85 (2014)
[10] Tian, L., Robust photon entanglement via quantum interference in optomechanical interfaces. Phys. Rev. Lett. (2013)
[11] Salmanogli, A.; Gokcen, D.; Gecim, H. S., Entanglement of optical and microcavity modes by means of an optoelectronic system. Phys. Rev. Appl. (2019)
[12] Lachance-Quirion, D.; Tabuchi, Y.; Gloppe, A.; Usami, K.; Nakamura, Y., Hybrid quantum systems based on magnonics. Appl. Phys. Express, 7 (2019)
[13] Zare Rameshti, B.; Viola Kusminskiy, S.; Haigh, J. A.; Usami, K.; Lachance-Quirion, D.; Nakamura, Y.; Hu, C.-M.; Tang, H. X.; Bauer, G. E.; Blanter, Y. M., Cavity magnonics. Phys. Rep., 1-61 (2022) · Zbl 1502.81068
[14] Yuan, H.; Cao, Y.; Kamra, A.; Duine, R. A.; Yan, P., Quantum magnonics: when magnon spintronics meets quantum information science. Phys. Rep., 1-74 (2022) · Zbl 1507.81193
[15] Zhang, X.; Zou, C.-L.; Jiang, L.; Tang, H. X., Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. (2014)
[16] Tabuchi, Y.; Ishino, S.; Ishikawa, T.; Yamazaki, R.; Usami, K.; Nakamura, Y., Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. (2014)
[17] Huebl, H.; Zollitsch, C. W.; Lotze, J.; Hocke, F.; Greifenstein, M.; Marx, A.; Gross, R.; Goennenwein, S. T.B., High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. (2013)
[18] Zhang, X.; Zou, C.-L.; Jiang, L.; Tang, H. X., Cavity magnomechanics. Sci. Adv., 3 (2016)
[19] Li, J.; Zhu, S.-Y.; Agarwal, G. S., Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. (2018)
[20] Li, J.; Zhu, S.-Y.; Agarwal, G. S., Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A (2019), 021801(R)
[21] Zhang, X.; Zhu, N.; Zou, C.-L.; Tang, H. X., Optomagnonic whispering gallery microresonators. Phys. Rev. Lett. (2016)
[22] Osada, A.; Hisatomi, R.; Noguchi, A.; Tabuchi, Y.; Yamazaki, R.; Usami, K.; Sadgrove, M.; Yalla, R.; Nomura, M.; Nakamura, Y., Cavity optomagnonics with spin-orbit coupled photons. Phys. Rev. Lett. (2016)
[23] Viola Kusminskiy, S.; Tang, H. X.; Marquardt, F., Coupled spin-light dynamics in cavity optomagnonics. Phys. Rev. A (2016)
[24] Sharma, S.; Blanter, Y. M.; Bauer, G. E.W., Light scattering by magnons in whispering gallery mode cavities. Phys. Rev. B (2017)
[25] Graf, J.; Pfeifer, H.; Marquardt, F.; Viola Kusminskiy, S., Cavity optomagnonics with magnetic textures: coupling a magnetic vortex to light. Phys. Rev. B (2018), 241406(R)
[26] Haigh, J. A.; Lambert, N. J.; Sharma, S.; Blanter, Y. M.; Bauer, G. E.W.; Ramsay, A. J., Selection rules for cavity-enhanced Brillouin light scattering from magnetostatic modes. Phys. Rev. B (2018)
[27] Sharma, S.; Rameshti, B. Z.; Blanter, Y. M.; Bauer, G. E.W., Optimal mode matching in cavity optomagnonics. Phys. Rev. B (2019)
[28] Bittencourt, V. A.S. V.; Feulner, V.; Kusminskiy, S. V., Magnon heralding in cavity optomagnonics. Phys. Rev. A (2019)
[29] Wu, W.-J.; Wang, Y.-P.; Wu, J.-Z.; Li, J.; You, J. Q., Remote magnon entanglement between two massive ferrimagnetic spheres via cavity optomagnonics. Phys. Rev. A (2021)
[30] Hisatomi, R.; Noguchi, A.; Yamazaki, R.; Nakata, Y.; Gloppe, A.; Nakamura, Y.; Usami, K., Helicity-changing Brillouin light scattering by magnons in a ferromagnetic crystal. Phys. Rev. Lett. (2019)
[31] Sharma, S.; Bittencourt, V. A.S. V.; Karenowska, A. D.; Kusminskiy, S. V., Spin cat states in ferromagnetic insulators. Phys. Rev. B (2021)
[32] Sun, F.-X.; Zheng, S.-S.; Xiao, Y.; Gong, Q.; He, Q.; Xia, K., Remote generation of magnon Schrödinger cat state via magnon-photon entanglement. Phys. Rev. Lett. (2021)
[33] Šimić, F.; Sharma, S.; Blanter, Y. M.; Bauer, G. E.W., Coherent pumping of high-momentum magnons by light. Phys. Rev. B (2020), 100401(R)
[34] Haigh, J. A.; Chakalov, R. A.; Ramsay, A. J., Subpicoliter magnetoptical cavities. Phys. Rev. Appl. (2020), 044005(R)
[35] Haigh, J. A.; Nunnenkamp, A.; Ramsay, A. J., Polarization dependent scattering in cavity optomagnonics. Phys. Rev. Lett. (2021)
[36] Xie, H.; Shi, Z.-G.; He, L.-W.; Chen, X.; Liao, C.-G.; Lin, X.-M., Proposal for a bell test in cavity optomagnonics. Phys. Rev. A (2022)
[37] Xie, H.; He, L.-W.; Shang, X.; Lin, G.-W.; Lin, X.-M., Nonreciprocal photon blockade in cavity optomagnonics. Phys. Rev. A (2022)
[38] Zhu, N.; Zhang, X.; Han, X.; Zou, C.-L.; Zhong, C.; Wang, C.-H.; Jiang, L.; Tang, H. X., Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica, 10, 1291-1297 (2020)
[39] Bittencourt, V. A.S. V.; Liberal, I.; Viola Kusminskiy, S., Optomagnonics in dispersive media: magnon-photon coupling enhancement at the epsilon-near-zero frequency. Phys. Rev. Lett. (2022)
[40] Bittencourt, V. A.S. V.; Liberal, I.; Viola Kusminskiy, S., Light propagation and magnon-photon coupling in optically dispersive magnetic media. Phys. Rev. B (2022)
[41] Amazioug, M.; Singh, S.; Teklu, B.; Asjad, M., Feedback control of quantum correlations in a cavity magnomechanical system with magnon squeezing. Entropy, 10 (2023)
[42] Amazioug, M.; Teklu, B.; Asjad, M., Enhancement of magnon-photon-phonon entanglement in a cavity magnomechanics with coherent feedback loop. Sci. Rep., 1, 3833 (2023)
[43] Cai, Q.; Liao, J.; Zhou, Q., Stationary entanglement between light and microwave via ferromagnetic magnons. Ann. Phys., 12 (2020)
[44] Fan, Z.-Y.; Qiu, L.; Gröblacher, S.; Li, J., Microwave-optics entanglement via cavity optomagnomechanics. Laser Photonics Rev. (2023)
[45] Wang, Y.-D.; Clerk, A. A., Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. (2013)
[46] Woolley, M. J.; Clerk, A. A., Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A (2014)
[47] Chen, R.-X.; Shen, L.-T.; Zheng, S.-B., Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Phys. Rev. A (2015)
[48] Liao, C.-G.; Chen, R.-X.; Xie, H.; Lin, X.-M., Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system. Phys. Rev. A (2018)
[49] Ockeloen-Korppi, C. F.; Damskägg, E.; Pirkkalainen, J.-M.; Asjad, M.; Clerk, A. A.; Massel, F.; Woolley, M. J.; Sillanpää, M. A., Stabilized entanglement of massive mechanical oscillators. Nature, 7702, 478-482 (2018)
[50] Liu, Z.-Q.; Hu, C.-S.; Jiang, Y.-K.; Su, W.-J.; Wu, H.; Li, Y.; Zheng, S.-B., Engineering optomechanical entanglement via dual-mode cooling with a single reservoir. Phys. Rev. A (2021)
[51] Liu, Z.-Q.; Liu, Y.; Tan, L.; Liu, W.-M., Reservoir engineering strong magnomechanical entanglement via dual-mode cooling. Ann. Phys., 5 (2023) · Zbl 07771935
[52] Gardiner, C.; Zoller, P., Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (2004), Springer: Springer Berlin, Heidelberg · Zbl 1072.81002
[53] Aspelmeyer, M.; Kippenberg, T. J.; Marquardt, F., Cavity optomechanics. Rev. Mod. Phys., 1391-1452 (2014)
[54] Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N. J.; Ralph, T. C.; Shapiro, J. H.; Lloyd, S., Gaussian quantum information. Rev. Mod. Phys., 621-669 (2012)
[55] Adesso, G.; Illuminati, F., Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A, Math. Theor., 28, 7821-7880 (2007) · Zbl 1117.81009
[56] Olivares, S., Quantum optics in the phase space. Eur. Phys. J. Spec. Top., 1, 3-24 (2012)
[57] Tan, H.; Bariani, F.; Li, G.; Meystre, P., Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation. Phys. Rev. A (2013)
[58] Brunelli, M.; Houhou, O.; Moore, D. W.; Nunnenkamp, A.; Paternostro, M.; Ferraro, A., Unconditional preparation of nonclassical states via linear-and-quadratic optomechanics. Phys. Rev. A (2018)
[59] Lee, J. H.; Suh, J.; Seok, H., Dissipation-driven nonclassical-state generation in optomechanics with squeezed light. Phys. Rev. A (2018)
[60] Brunelli, M.; Houhou, O., Linear and quadratic reservoir engineering of non-Gaussian states. Phys. Rev. A (2019)
[61] de Moraes Neto, G.; Montenegro, V., Dissipative optomechanical preparation of non-Gaussian mechanical entanglement. Phys. Lett. A (2022) · Zbl 1495.81017
[62] Vidal, G.; Werner, R. F., Computable measure of entanglement. Phys. Rev. A (2002)
[63] Adesso, G.; Serafini, A.; Illuminati, F., Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A (2004)
[64] Plenio, M. B., Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. (2005)
[65] Mari, A.; Eisert, J., Gently modulating optomechanical systems. Phys. Rev. Lett. (2009)
[66] Vitali, D.; Gigan, S.; Ferreira, A.; Böhm, H. R.; Tombesi, P.; Guerreiro, A.; Vedral, V.; Zeilinger, A.; Aspelmeyer, M., Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. (2007)
[67] Plenio, M. B.; Huelga, S. F., Entangled light from white noise. Phys. Rev. Lett. (2002)
[68] Kraus, B.; Büchler, H. P.; Diehl, S.; Kantian, A.; Micheli, A.; Zoller, P., Preparation of entangled states by quantum Markov processes. Phys. Rev. A (2008)
[69] Krauter, H.; Muschik, C. A.; Jensen, K.; Wasilewski, W.; Petersen, J. M.; Cirac, J. I.; Polzik, E. S., Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. (2011)
[70] Muschik, C. A.; Polzik, E. S.; Cirac, J. I., Dissipatively driven entanglement of two macroscopic atomic ensembles. Phys. Rev. A (2011)
[71] Tabuchi, Y.; Ishino, S.; Noguchi, A.; Ishikawa, T.; Yamazaki, R.; Usami, K.; Nakamura, Y., Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 6246, 405-408 (2015) · Zbl 1355.81040
[72] Haigh, J. A.; Nunnenkamp, A.; Ramsay, A. J.; Ferguson, A. J., Triple-resonant Brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett. (2016)
[73] Bourhill, J.; Kostylev, N.; Goryachev, M.; Creedon, D. L.; Tobar, M. E., Ultrahigh cooperativity interactions between magnons and resonant photons in a yig sphere. Phys. Rev. B (2016)
[74] Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Weides, M.; Ryazanov, V. V.; Golubov, A. A.; Ustinov, A. V.; Kupriyanov, M. Y., Ultrastrong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers. Sci. Adv., 25 (2021)
[75] Golovchanskiy, I.; Abramov, N.; Stolyarov, V.; Golubov, A.; Kupriyanov, M. Y.; Ryazanov, V.; Ustinov, A., Approaching deep-strong on-chip photon-to-magnon coupling. Phys. Rev. Appl. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.