×

Optimal symplectic connections on holomorphic submersions. (English) Zbl 1478.53116

Summary: The main result of this paper gives a new construction of extremal Kähler metrics on the total space of certain holomorphic submersions, giving a vast generalisation and unification of results of Hong, Fine and others. The principal new ingredient is a novel geometric partial differential equation on such fibrations, which we call the optimal symplectic connection equation.
We begin with a smooth fibration for which all fibres admit a constant scalar curvature Kähler metric. When the fibres admit automorphisms, such metrics are not unique in general, but rather are unique up to the action of the automorphism group of each fibre. We define an equation which, at least conjecturally, determines a canonical choice of constant scalar curvature Kähler metric on each fibre. When the fibration is a projective bundle, this equation specialises to asking that the hermitian metric determining the fibrewise Fubini-Study metric is Hermite-Einstein.
Assuming the existence of an optimal symplectic connection and the existence of an appropriate twisted extremal metric on the base of the fibration, we show that the total space of the fibration itself admits an extremal metric for certain polarisations making the fibres small.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
58E11 Critical metrics

References:

[1] Anchouche, B.; Biswas, I.Einstein‐Hermitian connections on polystable principal bundles over a compact Kähler manifold. Amer. J. Math.123 (2001), no. 2, 207-228. · Zbl 1007.53026
[2] Arezzo, C.; Pacard, F.; Singer, M.Extremal metrics on blowups. Duke Math. J.157 (2011), no. 1, 1-51. https://doi.org/10.1215/00127094‐2011‐001 · Zbl 1221.32008 · doi:10.1215/00127094‐2011‐001
[3] Berman, R. J.; Berndtsson, B.Convexity of the K‐energy on the space of Kähler metrics and uniqueness of extremal metrics. J. Amer. Math. Soc.30 (2017), no. 4, 1165-1196. https://doi.org/10.1090/jams/880 · Zbl 1376.32028 · doi:10.1090/jams/880
[4] Besse, A. L.Einstein manifolds. Classics in Mathematics. Springer, Berlin, 2008. · Zbl 1147.53001
[5] Brönnle, T. Deformation constructions of extremal metrics. Ph.D. thesis, Imperial College, University of London, 2011. · Zbl 1325.53095
[6] Brönnle, T.Extremal Kähler metrics on projectivized vector bundles. Duke Math. J.164 (2015), no. 2, 195-233. https://doi.org/10.1215/00127094‐2860166 · Zbl 1325.53095 · doi:10.1215/00127094‐2860166
[7] Calabi, E. Extremal Kähler metrics. II. Differential geometry and complex analysis, 95-114. Springer, Berlin, 1985. · Zbl 0574.58006
[8] Dervan, R. Uniform stability of twisted constant scalar curvature Kähler metrics. Int. Math. Res. Not. IMRN (2016), no. 15, 4728-4783. 10.1093/imrn/rnv291 · Zbl 1405.32032
[9] Dervan, R.; Naumann, P. Moduli of polarised manifolds via canonical Kähler metrics. Preprint, 2018. 1810.02576 [math.AG]
[10] DervanR.; RossJ.Stable maps in higher dimensions. Math. Ann.374 (2019) no. 3‐41033-1073. https://doi.org/10.1007/s00208‐018‐1706‐8 · Zbl 1505.14025 · doi:10.1007/s00208‐018‐1706‐8
[11] Dervan, R.; Sektnan, L. M. Extremal metrics on fibrations. Proc. Lond. Math. Soc. (3)120 (2020), no. 4, 587-616. 10.1112/plms.12297 · Zbl 1509.32004
[12] Donaldson, S. K. Lectures on Lie groups and geometry. Available at: https://wwwf.imperial.ac.uk/skdona/LIEGROUPSCONSOL.PDF
[13] Donaldson, S. K. Anti self‐dual Yang‐Mills connections over complex algebraic surfaces and stable vector bundles. Proc. London Math. Soc. (3)50 (1985), no. 1, 1-26. 10.1112/plms/s3‐50.1.1 · Zbl 0529.53018
[14] Donaldson, S. K.Infinite determinants, stable bundles and curvature. Duke Math. J.54 (1987), no. 1, 231-247. https://doi.org/10.1215/S0012‐7094‐87‐05414‐7 · Zbl 0627.53052 · doi:10.1215/S0012‐7094‐87‐05414‐7
[15] Donaldson, S. K.Scalar curvature and projective embeddings. I. J. Differential Geom.59 (2001), no. 3, 479-522. · Zbl 1052.32017
[16] Donaldson, S. K.Lower bounds on the Calabi functional. J. Differential Geom.70 (2005), no. 3, 453-472. · Zbl 1149.53042
[17] Donaldson, S. K. Stability of algebraic varieties and Kähler geometry. Algebraic geometry: Salt Lake City 2015, 199-221. Proceedings of Symposia in Pure Mathematics, 97.1. American Mathematical Society, Providence, R.I., 2018. · Zbl 1446.32018
[18] Fine, J.Constant scalar curvature Kähler metrics on fibred complex surfaces. J. Differential Geom.68 (2004), no. 3, 397-432. · Zbl 1085.53064
[19] Fine, J.Fibrations with constant scalar curvature Kähler metrics and the CM‐line bundle. Math. Res. Lett.14 (2007), no. 2, 239-247. https://doi.org/10.4310/MRL.2007.v14.n2.a7 · Zbl 1132.53039 · doi:10.4310/MRL.2007.v14.n2.a7
[20] Fine, J.; Panov, D.Symplectic Calabi‐Yau manifolds, minimal surfaces and the hyperbolic geometry of the conifold. J. Differential Geom.82 (2009), no. 1, 155-205. · Zbl 1177.32014
[21] Fischer, W.; Grauert, H.Lokal‐triviale Familien kompakter komplexer Mannigfaltigkeiten. Nachr. Akad. Wiss. Göttingen Math.‐Phys. Kl. II1965 (1965), 89-94. · Zbl 0135.12601
[22] Fujiki, A.; Schumacher, G.The moduli space of extremal compact Kähler manifolds and generalized Weil‐Petersson metrics. Publ. Res. Inst. Math. Sci.26 (1990), no. 1, 101-183. https://doi.org/10.2977/prims/1195171664 · Zbl 0714.32007 · doi:10.2977/prims/1195171664
[23] Guillemin, V.; Lerman, E.; Sternberg, S.Symplectic fibrations and multiplicity diagrams. Cambridge University Press, Cambridge, 1996. https://doi.org/10.1017/CBO9780511574788 · Zbl 0870.58023 · doi:10.1017/CBO9780511574788
[24] Hong, Y.‐J.Constant Hermitian scalar curvature equations on ruled manifolds. J. Differential Geom.53 (1999), no. 3, 465-516. · Zbl 1163.53341
[25] LeBrun, C.; Simanca, S. R.Extremal Kähler metrics and complex deformation theory. Geom. Funct. Anal.4 (1994), no. 3, 298-336. https://doi.org/10.1007/BF01896244 · Zbl 0801.53050 · doi:10.1007/BF01896244
[26] Li, C.; Wang, X.; Xu, C. Quasi‐projectivity of the moduli space of smooth Kähler‐Einstein Fano manifolds. Ann. Sci. Éc. Norm. Supér. (4)51 (2018), no. 3, 739-772. 10.24033/asens.2365 · Zbl 1421.32033
[27] Li, C.; Wang, X.; Xu, C.On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties. Duke Math. J.168 (2019), no. 8, 1387-1459. https://doi.org/10.1215/00127094‐2018‐0069 · Zbl 1469.14087 · doi:10.1215/00127094‐2018‐0069
[28] Lu, Z.; Seyyedali, R.Extremal metrics on ruled manifolds. Adv. Math.258 (2014), 127-153. https://doi.org/10.1016/j.aim.2014.03.012 · Zbl 1288.53073 · doi:10.1016/j.aim.2014.03.012
[29] McDuff, D.; Salamon, D.Introduction to symplectic topology. Third edition. Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2017. https://doi.org/10.1093/oso/9780198794899.001.0001 · doi:10.1093/oso/9780198794899.001.0001
[30] Michor, P. W.Topics in differential geometry. Graduate Studies in Mathematics, 93. American Mathematical Society, Providence, R.I., 2008. 10.1090/gsm/093 · Zbl 1175.53002
[31] Odaka, Y.Compact moduli spaces of Kähler‐Einstein Fano varieties. Publ. Res. Inst. Math. Sci.51 (2015), no. 3, 549-565. https://doi.org/10.4171/PRIMS/164 · Zbl 1333.14039 · doi:10.4171/PRIMS/164
[32] Ross, J.; Thomas, R.An obstruction to the existence of constant scalar curvature Kähler metrics. J. Differential Geom.72 (2006), no. 3, 429-466. · Zbl 1125.53057
[33] Székelyhidi, G.The Kähler‐Ricci flow and K‐polystability. Amer. J. Math.132 (2010), no. 4, 1077-1090. https://doi.org/10.1353/ajm.0.0128 · Zbl 1206.53075 · doi:10.1353/ajm.0.0128
[34] Székelyhidi, G.An introduction to extremal Kähler metrics. Graduate Studies in Mathematics, 152. American Mathematical Society, Providence, R.I., 2014. · Zbl 1298.53002
[35] Tian, G.Canonical metrics in Kähler geometry. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2000. 10.1007/978‐3‐0348‐8389‐4 · Zbl 0978.53002
[36] Uhlenbeck, K.; Yau, S.‐T. On the existence of Hermitian‐Yang‐Mills connections in stable vector bundles. Frontiers of the mathematical sciences: 1985 (New York, 1985). Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257-S293. 10.1002/cpa.3160390714 · Zbl 0615.58045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.