×

Inverse problems and parameter identification in image processing. (English) Zbl 1272.94004

Dahlhaus, Rainer (ed.) et al., Mathematical methods in signal processing and digital image analysis. Berlin: Springer (ISBN 978-3-540-75631-6/hbk). Springer Complexity, 111-151 (2008).
Summary: Many problems in imaging are actually inverse problems. One reason for this is that conditions and parameters of the physical processes underlying the actual image acquisition are usually not known. Examples for this are the inhomogeneities of the magnetic field in magnetic resonance imaging (MRI) leading to nonlinear deformations of the anatomic structures in the recorded images, material parameters in geological structures as unknown parameters for the simulation of seismic wave propagation with sparse measurement on the surface, or temporal changes in movie sequences given by intensity changes or moving image edges and resulting from deformation, growth and transport processes with unknown fluxes. The underlying physics is mathematically described in terms of variational problems or evolution processes. Hence, solutions of the forward problem are naturally described by partial differential equations. These forward models are reflected by the corresponding inverse problems as well. Beyond these concrete, direct modeling links to continuum mechanics abstract concepts from physical modeling are successfully picked up to solve general perceptual problems in imaging. Examples are visually intuitive methods to blend between images showing multiscale structures at different resolution or methods for the analysis of flow fields.
For the entire collection see [Zbl 1130.68006].

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
86-08 Computational methods for problems pertaining to geophysics

Software:

LDDMM; FEATFLOW
Full Text: DOI

References:

[1] J. F.Acker. PDF basierte Visualisierungsmethoden für instationäre Strömungen auf unstrukturierten Gittern. PhD thesis, Universität Dortmund, to appear in 2008.
[2] Ambrosio, L.; Tortorelli, V. M., On the approximation of free discontinuity problems, Bollettino de la Unione Matematica Italiana (1992), 1: 5-123, 1 · Zbl 0776.49029
[3] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (2000), New York: The Clarendon Press, New York · Zbl 0957.49001
[4] Arredondo, M.; Lebart, K.; Lane, D., Optical flow using textures, Pattern Recognition Letters (2004), 4: 9-457, 4
[5] R. Bajcsy and C Broit. Matching of deformed images. In Proceedings of the 6th International Conference on Pattern Recognition, pages 351-353, 1982.
[6] Ball, J. M., Global invertibility of sobolev functions and the interpenetration of matter, Proceedings of the Royal Society of Edinburgh (1981), 3: 5-328, 3 · Zbl 0478.46032
[7] L. Bar, B. Berkels, M. Rumpf, and G. Sapiro. A variational framework for simulateneous motion estimation and restoration of motion-blurred video. In Proceedings ICCV, to appear, 2007.
[8] Bigün, J.; Granlund, G. H.; Wiklund, J., Multidimensional orientation estimation with applications to texture analysis and optical flow, IEEE Transactions on Pattern Analysis and Machine Intelligence (1991), 7: 5-790, 7
[9] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, pages 187-194, 1999.
[10] K. Bredies. Optimal control of degenerate parabolic equations in image processing. PhD thesis, University of Bremen, 2007.
[11] K. Bredies, D.A. Lorenz, and P. Maass. A generalized conditional gradient method and its connection to an iterative shrinkage method. To appear in Computational Optimization and Applications, 2008. · Zbl 1179.90326
[12] Gottesfeld Brown, L., A survey of image registration techniques, ACM Computing Surveys, 24, 4, 325-376 (1992) · doi:10.1145/146370.146374
[13] Bruhn, A.; Weickert, J.; Klette, R.; Kozera, R.; Noakes, L.; Weickert, J., A confidence measure for variational optic flow methods, Geometric Properties for Incomplete data Series: Computational Imaging and Vision (2006), 2: 3-298, 2
[14] Bruhn, A.; Weickert, J.; Schnörr, C., Lucas/kanade meets horn/schunck: Combining local and global optic flow methods, International Journal of Computer Vision, 61, 3, 211-231 (2005) · Zbl 1477.68337 · doi:10.1023/B:VISI.0000045324.43199.43
[15] D. Bürkle, T. Preusser, and M. Rumpf. Transport and anisotropic diffusion in time-dependent flow visualization. In Proceedings Visualization’ 01, 2001.
[16] B. Cabrai and L. Leedom. Imaging vector fields using line integral convolution. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH’ 93 Proceedings), volume 27, pages 223-272, August 1993.
[17] Capon, J., High-resolution frequency-wavenumber spectrum analysis, Proceedings of the IEEE, 57, 8, 1408-1418 (1969) · doi:10.1109/PROC.1969.7278
[18] Catté, F.; Lions, P.-L.; Morel, J.-M.; Coll, T., Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal On Numerical Analysis (1992), 1: 2-193, 1 · Zbl 0746.65091
[19] Chong, M. S.; Perry, A. E.; Cantwell, B. J., A general classification of three-dimensional flow fields, Physics of Fluids A (1990), 7: 5-777, 7
[20] Ciarlet, P. G., Three-Dimensional Elasticity (1988), New York: Elsevier, New York · Zbl 0648.73014
[21] Clarenz, U.; Litke, N.; Rumpf, M., Axioms and variational problems in surface parameterization, Computer Aided Geometric Design (2004), 7: 7-749, 7 · Zbl 1069.65547
[22] U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch. Computational methods for nonlinear image registration. In O. Scherzer, editor, Mathematical Models for Registration and Applications to Medical Imaging, Mathematics in Industry, volume 10, Springer, 2006. · Zbl 1185.92070
[23] Collignon, A.; Bizais, Y.; Barillot, C.; Di Paola, R., Automated multi-modality image registration based on information theory, Proceedings of the XIVth international conference on information processing in medical imaging IPMI’95, computational imaging and vision, 263-274 (1995), France: Ile de Berder, France
[24] Diallo, M. S.; Kulesh, M.; Holschneider, M.; Scherbaum, F., Instantaneous polarization attributes in the time-frequency domain and wavefield separation, Geophysical Prospecting (2005), 7: 3-731, 7
[25] Diallo, M. S.; Kulesh, M.; Holschneider, M.; Kurennaya, K.; Scherbaum, F., Instantaneous polarization attributes based on an adaptive approximate covariance method, Geophysics, 71, 5, V99-V104 (2006) · doi:10.1190/1.2227522
[26] Diallo, M. S.; Kulesh, M.; Holschneider, M.; Scherbaum, F.; Adler, F., Characterization of polarization attributes of seismic waves using continuous wavelet transforms, Geophysics, 71, 3, V67-V77 (2006) · doi:10.1190/1.2194511
[27] Diewald, U.; Preusser, T.; Rumpf, M., Anisotropic diffusion in vector field visualization on euclidean domains and surfaces, IEEE Transactions on Visualization and Computer Graphics, 6, 2, 39-149 (2000) · doi:10.1109/2945.856995
[28] Droske, M.; Ring, W., A Mumford-Shah level-set approach for geometric image registration, SIAM Journal on Applied Mathematics, 66, 6, 2127-2148 (2006) · Zbl 1112.49029 · doi:10.1137/050630209
[29] Droske, M.; Rumpf, M., A variational approach to non-rigid morphological registration, SIAM Applied Mathematics (2004), 6: 8-687, 6 · Zbl 1063.49013
[30] Droske, M.; Rumpf, M., Multi scale joint segmentation and registration of image morphology, IEEE Transaction on Pattern Recognition and Machine Intelligence, 29, 12, 2181-2194 (2007)
[31] M. Droske, C. Garbe, T. Preusser, M. Rumpf, and A. Telea. A phase field method for joint denoising, edge detection and motion estimation. SIAM Applied Mathematics, Revised Version Submitted, 2007. · Zbl 1513.94010
[32] Florack, L.; Kuijper, A., The topological structure of scale-space images, Journal of Mathematical Imaging and Vision, 12, l, 65-79 (2000) · Zbl 0979.68585 · doi:10.1023/A:1008304909717
[33] Grenander, U.; Miller, M. I., Computational anatomy: An emerging discipline, Quarterly Applied Mathematics, 56, 4, 617-694 (1998) · Zbl 0952.92016
[34] M. Griebel, T. Preusser, M. Rumpf, M.A. Schweitzer, and A. Telea. Flow field clustering via algebraic multigrid. In Proceedings IEEE Visualization, pages 35-42, 2004.
[35] X. Gu and B.C. Vemuri. Matching 3D shapes using 2D conformai representations. In MICCAI 2004, LNCS 3216, pages 771-780, 2004.
[36] Heeger, D., Model for the extraction of image flow, Journal of the Optical Society of America, 4, 8, 1455-1471 (1987)
[37] Holschneider, M., Wavelets: An Analysis Tool (1995), Oxford: Clarendon Press, Oxford · Zbl 0874.42020
[38] Holschneider, M.; Diallo, M. S.; Kulesh, M.; Ohrnberger, M.; Lück, E.; Scherbaum, F., Characterization of dispersive surface waves using continuous wavelet transforms, Geophysical Journal International (2005), 4: 3-478, 4
[39] J.C. R. Hunt, A.A. Wray, and P. Moin. Eddies, stream and convergence zones in turbulent flow fields. Technical Report CTR-S88, Center for turbulence research, 1988.
[40] Interrante, V.; Grosch, C., Stragegies for effectively visualizing 3D flow with volume LIC, Proceedings Visualization’ 97 (1997), 2: 5-292, 2
[41] Jeong, J.; Hussain, F., On the identification of a vortex, Journal of Fluid Mechanics, 285, 69-94 (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[42] S. Kalkan, D. Calow, M. Felsberg, F. Worgotter, M. Lappe, and N. Kruger. Optic flow statistics and intrinsic dimensionality, 2004.
[43] Kanasewich, E. R., Time Sequence Analysis in Geophysics (1981), Edmonton, Alberta: University of Alberta Press, Edmonton, Alberta
[44] Kawohl, B.; Kutev, N., Maximum and comparison principle for onedimensional anisotropic diffusion, Mathematische Annalen, 311, l, 107-123 (1998) · Zbl 0909.35025 · doi:10.1007/s002080050179
[45] C. Kondermann, D. Kondermann, B. Jähne, and C. Garbe. Comparison of confidence and situation measures and their optimality for optical flows, submitted to International Journal of Computer Vision, February 2007.
[46] C. Kondermann, D. Kondermann, B. Jähne, and C. Garbe. An adaptive confidence measure for optical flows based on linear subspace projections. In Proceedings of the DAGM-Symposium, pages 132-141, 2007. http://dx.doi.org/10.1007/978-3-540-74936-3_14.
[47] C. Kondermann, D. Kondermann, B. Jähne, and C. Garbe. Optical flow estimation via flow inpainting using surface situation measures. submitted, 2007.
[48] A. Kufner. Weighted sobolev spaces, 1980. Teubner-Texte zur Mathematik, volume 31. · Zbl 0455.46034
[49] Kulesh, M.; Holschneider, M.; Diallo, M. S.; Xie, Q.; Scherbaum, F., Modeling of wave dispersion using continuous wavelet transforms, Pure and Applied Geophysics, 162, 5, 843-855 (2005) · doi:10.1007/s00024-004-2644-9
[50] Kulesh, M.; Diallo, M. S.; Holschneider, M.; Kurennaya, K.; Krüger, F.; Ohrnberger, M.; Scherbaum, F., Polarization analysis in the wavelet domain based on the adaptive covariance method, Geophysical Journal International, 170, 2, 667-678 (2007) · doi:10.1111/j.1365-246X.2007.03417.x
[51] M. Kulesh, M. Holschneider, M. Ohrnberger, and E. Lück. Modeling of wave dispersion using continuous wavelet transforms II: wavelet based frequency-velocity analysis. Technical Report 154, Preprint series of the DFG priority program 1114 “Mathematical methods for time series analysis and digital image processing”, January 2007.
[52] Kulesh, M. A.; Diallo, M. S.; Holschneider, M., Wavelet analysis of ellipticity, dispersion, and dissipation properties of Rayleigh waves, Acoustical Physics, 51, 4, 425-434 (2005) · doi:10.1134/1.1983605
[53] Kuzmin, D.; Turek, S., High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter, Journal of Computational Physics, 198, 131-158 (2004) · Zbl 1107.76352 · doi:10.1016/j.jcp.2004.01.015
[54] S. H. Lai and B.C. Vemuri. Robust and efficient algorithms for optical flow computation. In Proceedings of the International Symposium on Computer Vision, pages 455-460, November 1995.
[55] Laramee, R. S.; Hausser, H.; Doleisch, H.; Vrolijk, B.; Post, F. H.; Weiskopf, D., The state of the art in flow visualization: Dense and texturebased techniques, Computer Graphics Forum, 23, 2, 203-221 (2004) · doi:10.1111/j.1467-8659.2004.00753.x
[56] A. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multiresolution mesh morphing. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, pages 343-350, August 1999.
[57] N. Litke, M. Droske, M. Rumpf, and P. Schröder. An image processing approach to surface matching. In M. Desbrun and H. Pottmann, editors, Third Eurographics Symposium on Geometry Processing, Eurographics Association, pages 207-216, 2005.
[58] Masnou, S.; Morel, J., Level lines based disocclusion, Proceedings of ICIP, 3, 259-263 (1998)
[59] B. McCane, K. Novins, D. Crannitch, and B. Galvin. On benchmarking optical flow. http://of-eval.sourceforge.net/, 2001. · Zbl 1021.68733
[60] Miller, M. I.; Trouvé, A.; Younes, L., On the metrics and euler-lagrange equations of computational anatomy, Annual Review of Biomedical Enginieering, 4, 375-405 (2002) · doi:10.1146/annurev.bioeng.4.092101.125733
[61] Morozov, I. B.; Smithson, S. B., Instantaneous polarization attributes and directional filtering, Geophysics, 61, 3, 872-881 (1996) · doi:10.1190/1.1444012
[62] Oleinik, O. A.; Radkevic, E. V., Second order equations with nonnegative characteristic form, American Mathematical Society (1973), New York: Providence, Rhode Island and Plenum Press, New York
[63] Pacor, F.; Bindi, D.; Luzi, L.; Parolai, S.; Marzorati, S.; Monachesi, G., Characteristics of strong ground motion data recorded in the Gubbio sedimentary basin (Central Italy), Bulletin of Earthquake Engineering (2007), 2: -43, 2
[64] Pedersen, H. A.; Mars, J. I.; Amblard, P.-O., Improving surface-wave group velocity measurements by energy reassignment, Geophysics, 68, 2, 677-684 (2003) · doi:10.1190/1.1567238
[65] P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. In IEEE Computer Society Workshop on Computer Vision, 1987.
[66] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, Technical Report UCB/CSD-88-483 (1988), Berkeley: EECS Department, University of California, Berkeley
[67] Pinnegar, C. R., Polarization analysis and polarization filtering of threecomponent signals with the time-frequency S transform, Geophysical Journal International, 165, 2, 596-606 (2006) · doi:10.1111/j.1365-246X.2006.02937.x
[68] Pironneau, O., On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numerische Mathematics, 38, 309-332 (1982) · Zbl 0505.76100 · doi:10.1007/BF01396435
[69] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipe in C: The Art of Scientific Computing. Cambridge University Press, 1992. · Zbl 0845.65001
[70] Preusser, T.; Rumpf, M., An adaptive finite element method for large scale image processing, Journal of Visual Communication and Image Representation, 11, 183-195 (2000) · doi:10.1006/jvci.1999.0444
[71] Schimmel, M.; Gallart, J., The inverse S-transform in filters with timefrequency localization, IEEE Transaction on Signal Processing, 53, 11, 4417-4422 (2005) · Zbl 1370.94227 · doi:10.1109/TSP.2005.857065
[72] H.-W. Shen and D.L. Kao. Uflic: A line integral convolution algorithm for visualizing unsteady flows. In Proceedings Visualization’ 97, pages 317-322, 1997.
[73] Soma, N.; Niitsuma, H.; Baria, R., Reflection technique in timefrequency domain using multicomponent acoustic emission signals and application to geothermal reservoirs, Geophysics, 67, 3, 928-938 (2002) · doi:10.1190/1.1484535
[74] H. Spies and C. Garbe. Dense parameter fields from total least squares. In L. Van Gool, editor, Pattern Recognition, volume LNCS 2449 of Lecture Notes in Computer Science, pages 379-386, Zurich, CH, 2002. SpringerVerlag. · Zbl 1017.68888
[75] A. Telea, T. Preusser, C. Garbe, M. Droske, and M. Rumpf. A variational approach to joint denoising, edge detection and motion estimation. In Proceedings of DAGM 2006, pages 525-535, 2006. · Zbl 1513.94010
[76] Tobak, M.; Peake, D. J., Topology of 3D separated flow, Annual Review of Fluid Mechanics, 14, 61-85 (1982) · Zbl 0512.76043 · doi:10.1146/annurev.fl.14.010182.000425
[77] S. Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach, volume 6 of LNCSE. Springer Verlag Berlin Heidelberg New York, 1999. · Zbl 0930.76002
[78] Turek, S.; Rivkind, L.; Hron, J.; Glowinski, R., Numerical analysis of a new time-stepping θ-scheme for incompressible flow simulations, Journal of Scientific Computing, 28, 2-3, 533-547 (2006) · Zbl 1158.76385 · doi:10.1007/s10915-006-9083-y
[79] G. Turk and D. Banks. Image-guided streamline placement. In Proc. 23rd annual conference on Computer graphics, August 4-9, 1996, New Orleans, LA USA. ACM Press, 1996.
[80] J.J. vanWijk. Spot noise-texture synthesis for data visualization. In T.W. Sederberg, editor, Computer Graphics (SIGGRAPH’ 91 Proceedings), volume 25, pages 309-318, Addison Wesley July 1991.
[81] van Wijk, J. J., Flow visualization with surface particles, IEEE Computer Graphics and Applications, 13, 4, 18-24 (1993) · doi:10.1109/38.219449
[82] Viola, P.; Wells, W. M., Alignment by maximization of mutual information, International Journal of Computer Vision, 24, 2, 137-154 (1997) · doi:10.1023/A:1007958904918
[83] Weickert, J., Anisotropic Diffusion in Image Processing (1998), Teubner, Stuttgart, Leipzig: European Consortium for Mathematics in Industry., Teubner, Stuttgart, Leipzig · Zbl 0886.68131
[84] Witkin, A. P., Scale-space filtering, Proceedings of the 8th IJCAI, 1019-1022 (1983), Germany: Karlsruhe, Germany
[85] Q. Xie, M. Holschneider, and M. Kulesh. Some remarks on linear diffeomorphisms in wavelet space. Technical Report 37, Preprint series of the DFG priority program 1114 “Mathematical methods for time series analysis and digital image processing”, July 2003.
[86] Zetzsche, C.; Barth, E., Fundamental limits of linear filters in the visual processing of two dimensional signals, Vision Research, 30, 7, 1111-1117 (1990) · doi:10.1016/0042-6989(90)90120-A
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.