×

Direct-drive inertial confinement fusion implosions on omega. (English) Zbl 1132.85330

Summary: Direct-drive inertial confinement fusion (ICF) creates extreme states of matter. In current direct-drive cryogenic target implosions on the 60-beam OMEGA laser system, the compressed target has a measured pressure of 5 Gbar. These targets are hydrodynamically scaled from ignition targets for the National Ignition Facility. The ignition targets are predicted to have peak pressures of 3 Tbar after the target ignites. ICF target acceleration and deceleration are realized when hot, low-density plasma pushes against cold, high-density plasma, making the target implosion inherently susceptible to the Rayleigh-Taylor hydrodynamic instability (RTI). The unstable RTI growth causes mixing of cold, high-density shell plasma with the low-density, hot-spot plasma and reduces the primary neutron yield of the implosion. The strategy to control the RTI growth is to reduce the seeds (e.g., laser imprint and target-surface roughness) and the growth rates of the dominant modes. This paper reports on our recent experiments, progress in validating the hydrodynamics codes that are used to design future high-gain cryogenic DT targets, and techniques to improve target performance. A brief description is given of a new high energy petawatt laser-OMEGA EP (extended performance)-that is being added to the OMEGA compression facility.

MSC:

85A05 Galactic and stellar dynamics
Full Text: DOI

References:

[1] Bell, G.I.: 1951, Los Alamos National Laboratory, Los Alamos, CA, Report LA-1321.
[2] Betti, R. et al.: 1998, Phys. Plasmas 5, 1446. · doi:10.1063/1.872802
[3] Betti, R. et al.: 2002, Phys. Plasmas 9, 2277. · doi:10.1063/1.1459458
[4] Bodner, S.E. et al.: 1998, Phys. Plasmas 5, 1901. · doi:10.1063/1.872861
[5] Boehly, T.R. et al.: 1997, Opt. Commun. 133, 495. · doi:10.1016/S0030-4018(96)00325-2
[6] Boehly, T.R. et al.: 1999, J. Appl. Phys. 85, 3444. · doi:10.1063/1.369702
[7] Campbell, M.D. and Hogan, W.J.: 1999, Plasma Phys. Control. Fusion 41, B39; Dimonte G.: 1999, Phys. Plasmas 6, 2009. · doi:10.1088/0741-3335/41/12B/303
[8] Campbell, M.D. and Hogan, W.J.: 1999, Plasma Phys. Control. Fusion 41, B39; Dimonte G.: 1999, Phys. Plasmas 6, 2009. · doi:10.1063/1.873491
[9] Glendinning, S.G. et al.: 1997, Phys. Rev. Lett. 78, 3318. · doi:10.1103/PhysRevLett.78.3318
[10] Glendinning, S.G. et al.: 2000, Phys. Plasmas 7, 2033. · doi:10.1063/1.874024
[11] Goncharov, V.N. et al.: 2003, Phys. Plasmas 10, 1906. · doi:10.1063/1.1562166
[12] Herrmann, M.C., Tabak, M. and Lindl, J.D.: 2001, Phys. Plasmas 8, 2296. · doi:10.1063/1.1364516
[13] Hsing, W.W. et al.: 1997, Phys. Plasmas 4, 1832. · doi:10.1063/1.872326
[14] Li, C.K. et al.: 2002, Phys. Rev. Lett. 89, 165002. · doi:10.1103/PhysRevLett.89.165002
[15] Lindl, J.D.: 1998, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain using Indirect Drive, New York, Springer-Verlag.
[16] Marinak, M.M. et al.: 1996, Phys. Plasmas 3, 2070. · doi:10.1063/1.872004
[17] McKenty, P.W. et al.: 2001, Phys. Plasmas 8, 2315. · doi:10.1063/1.1350571
[18] McKenty, P.W. et al.: ”Direct-drive cryogenic target implosion performance on OMEGA,” Phys. Plasmas (to be published).
[19] Meyerhofer, D.D. et al.: 2001, Phys. Plasmas 8, 2251. · doi:10.1063/1.1350964
[20] Meyerhofer, D.D. et al.: 2003, Bull. Am. Phys. Soc. 48, 55.
[21] National Research Council (U.S.) Committee on High Energy Density Plasma Physics, Frontiers in High Energy Density Physics: The X-Games of Contemporary Science, 2003, National Academies Press, Washington, DC.
[22] Pawley, C.J. et al.: 1999, Phys. Plasmas 6, 565. · doi:10.1063/1.873201
[23] Plesset, M.S.: 1954, J. Appl. Phys. 25, 96. · Zbl 0055.18501 · doi:10.1063/1.1721529
[24] Radha, P.B. et al.: 2002, Phys. Plasmas 9, 2208. · doi:10.1063/1.1459452
[25] Regan, S.P. et al.: ’Performance of 1-THz-bandwidth, 2-D smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams’, J. Opt. Soc. Am. B (submitted).
[26] Regan, S.P. et al.: 2002a, Phys. Rev. Lett. 89, 085003. · doi:10.1103/PhysRevLett.89.085003
[27] Regan, S.P. et al.: 2002b, Phys. Plasmas 9, 1357. · doi:10.1063/1.1456530
[28] Sangster, T.C. et al.: 2003, Phys. Plasmas 10, 1937. · doi:10.1063/1.1565116
[29] Stoeckl, C. et al.: 2002, Phys. Plasmas 9, 2195. · doi:10.1063/1.1458586
[30] Séguin, F.H. et al.: 2003, Rev. Sci. Instrum. 74, 975. · doi:10.1063/1.1518141
[31] Skupsky, S. et al.: 1989, J. Appl. Phys. 66, 3456. · doi:10.1063/1.344101
[32] Skupsky, S. and Craxton R.S.: 1999, Phys. Plasmas 6, 2157. · doi:10.1063/1.873501
[33] Smalyuk, V.A. et al.: ’Hot-core characterization of the cryogenic D2 target at peak neutron production in direct-drive spherical implosion’, Phys. Rev. Lett. (submitted).
[34] Smalyuk, V.A. et al.: 1998, Phys. Rev. Lett. 81, 5342. · doi:10.1103/PhysRevLett.81.5342
[35] Smalyuk, V.A. et al.: 2001, Phys. Rev. Lett. 87, 155002. · doi:10.1103/PhysRevLett.87.155002
[36] Tabak, M. et al.: 1994, Phys. Plasmas 1, 1626. · doi:10.1063/1.870664
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.