×

Pulsating turbulence in a marginally unstable stratified shear flow. (English) Zbl 1383.76266

Summary: We describe a simple model for turbulence in a marginally unstable, forced, stratified shear flow. The model illustrates the essential physics of marginally unstable turbulence, in particular the tendency of the mean flow to fluctuate about the marginally unstable state. Fluctuations are modelled as an oscillatory interaction between the mean shear and the turbulence. The interaction is made quantitative using empirically established properties of stratified turbulence. The model also suggests a practical way to estimate both the mean kinetic energy of the turbulence and its viscous dissipation rate. Solutions compare favourably with observations of fluctuating ’deep cycle’ turbulence in the equatorial oceans.

MSC:

76F45 Stratification effects in turbulence
76F10 Shear flows and turbulence

References:

[1] Alford, M. H.; Whitmont, M., Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records, J. Phys. Oceanogr., 37, 2022-2037, (2007) · doi:10.1175/JPO3106.1
[2] Canuto, V. M.; Howard, A. M.; Cheng, Y.; Muller, C. J.; Leboissetier, A.; Jayne, S. R., Ocean turbulence, III: New GISS vertical mixing scheme, Ocean Model., 34, 70-91, (2010) · doi:10.1016/j.ocemod.2010.04.006
[3] Crawford, W. R., Pacific equatorial turbulence, J. Phys. Oceanogr., 12, 1137-1149, (1982) · doi:10.1175/1520-0485(1982)012<1137:PET>2.0.CO;2
[4] Gregg, M. C.; Peters, H.; Wesson, J. C.; Oakey, N. S.; Shay, T. J., Intensive measurements of turbulence and shear in the equatorial undercurrent, Nature, 318, 140-144, (1985) · doi:10.1038/318140a0
[5] Itsweire, E. C.; Koseff, J. R.; Briggs, D. A.; Ferziger, J. H., Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean, J. Phys. Oceanogr., 23, 1508-1522, (1993) · doi:10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2
[6] Ivey, G. N.; Winters, K. B.; Koseff, J. R., Density stratification, turbulence, but how much mixing?, Annu. Rev. Fluid Mech., 40, 169-184, (2008) · Zbl 1136.76026 · doi:10.1146/annurev.fluid.39.050905.110314
[7] Jacobitz, F. G.; Sarkar, S.; Van Atta, C. W., Direct numerical simulations of the turbulence evolution in a uniformly sheared and stratified flow, J. Fluid Mech., 342, 231-261, (1997) · Zbl 0900.76172 · doi:10.1017/S0022112097005478
[8] Luznik, L.; Zhu, W.; Gurka, R.; Katz, J.; Nimmo Smith, W. A. M.; Osborn, T. R., Distribution of energy spectra, Reynolds stresses, turbulence production, and dissipation in a tidally driven bottom boundary layer, J. Phys. Oceanogr., 37, 6, 1527-1550, (2007) · doi:10.1175/JPO3076.1
[9] Mater, B. D.; Venayagamoorthy, S. K., A unifying framework for parameterizing stably stratified shear-flow turbulence, Phys. Fluids, 26, 3, (2014) · doi:10.1063/1.4868142
[10] Mcphaden, M. J., The tropical atmosphere ocean array is completed, Am. Met. Soc. Bull., 76, 739-741, (1995)
[11] Moum, J. N., Efficiency of mixing in the main thermocline, J. Geophys. Res., 101, C5, 12057-12069, (1996) · doi:10.1029/96JC00508
[12] Moum, J. N., Energy-containing scales of turbulence in the ocean thermocline, J. Geophys. Res., 101, C6, 14095-14109, (1996) · doi:10.1029/96JC00507
[13] Moum, J. N.; Caldwell, D. R., Local influences on shear flow turbulence in the equatorial ocean, Science, 230, 315-316, (1985) · doi:10.1126/science.230.4723.315
[14] Moum, J. N.; Gregg, M. C.; Lien, R.-C.; Carr, M. E., Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profilers, J. Atmos. Ocean. Technol., 12, 2, 346-366, (1995) · doi:10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2
[15] Moum, J. N.; Hebert, D.; Paulson, C. A.; Caldwell, D. R., Turbulence and internal waves at the equator. Part I: Statistics from towed thermistor chains and a microstructure profiler, J. Phys. Oceanogr., 22, 1330-1345, (1992) · doi:10.1175/1520-0485(1992)022<1330:TAIWAT>2.0.CO;2
[16] Moum, J. N.; Lien, R.-C.; Perlin, A.; Nash, J. D.; Gregg, M. C.; Wiles, P. J., Sea surface cooling at the equator by subsurface mixing in tropical instability waves, Nat. Geosci., 2, 761-765, (2009) · doi:10.1038/ngeo657
[17] Osborn, T. R., Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10, 83-89, (1980) · doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
[18] Peters, H.; Gregg, M. C.; Sanford, T. B., On the parameterization of equatorial turbulence: effect of finescale variations below the range of the diurnal cycle, J. Geophys. Res., 100, 18333-18348, (1995) · doi:10.1029/95JC01513
[19] Pham, H. T.; Sarkar, S.; Winters, K., Large-eddy simulation of deep-cycle turbulence in an upper-equatorial undercurrent model, J. Phys. Oceanogr., 43, 11, 2490-2502, (2013) · doi:10.1175/JPO-D-13-016.1
[20] Pollard, R. T. & Millard, R. C.1970Comparison between observed and simulated wind-generated inertial oscillations. In Deep Sea Research and Oceanographic Abstracts, vol. 17, pp. 813-816, IN5, 817-821. Elsevier.
[21] Pollard, R. T.; Rhines, P. B.; Thompson, R. O. R. Y., The deepening of the wind-mixed layer, Geophys. Fluid Dyn., 4, 1, 381-404, (1972) · doi:10.1080/03091927208236105
[22] Saddoughi, S. G., Local isotropy in complex turbulent boundary layers at high Reynolds number, J. Fluid Mech., 348, 201-245, (1997) · doi:10.1017/S0022112097006666
[23] Saddoughi, S. G.; Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech., 268, 333-372, (1994) · doi:10.1017/S0022112094001370
[24] Schudlich, R.; Price, J., Diurnal cycles of current, temperature, and turbulent dissipation in a model of the equatorial upper ocean, J. Geophys. Res., 97, 5409-5422, (1992) · doi:10.1029/91JC01918
[25] Smyth, W. D.; Moum, J. N., Anisotropy of turbulence in stably stratified mixing layers, Phys. Fluids, 12, 1343-1362, (2000) · Zbl 1149.76543 · doi:10.1063/1.870386
[26] Smyth, W. D.; Moum, J. N., Seasonal cycles of marginal instability and deep cycle turbulence in the eastern equatorial Pacific ocean, Geophys. Res. Lett., 40, 6181-6185, (2013) · doi:10.1002/2013GL058403
[27] Smyth, W. D.; Moum, J. N.; Li, L.; Thorpe, S. A., Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence, J. Phys. Oceanogr., 43, 2432-2455, (2013) · doi:10.1175/JPO-D-13-089.1
[28] Sun, C.; Smyth, W. D.; Moum, J. N., Dynamic instability of stratified shear flow in the upper equatorial Pacific, J. Geophys. Res., 103, 10323-10337, (1998) · doi:10.1029/98JC00191
[29] Thorpe, S. A.; Liu, Z., Marginal instability?, J. Phys. Oceanogr., 39, 2373-2381, (2009) · doi:10.1175/2009JPO4153.1
[30] Townsend, A. A., The Structure of Turbulent Shear Flow, (1976), Cambridge University Press · Zbl 0325.76063
[31] Zervakis, V.; Levine, M. D., Near-inertial energy propagation from the mixed layer: theoretical considerations, J. Phys. Oceanogr., 25, 11, 2872-2889, (1995) · doi:10.1175/1520-0485(1995)025<2872:NIEPFT>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.