×

Why does superoxide dismutase overexpression often increase hydrogen peroxide concentrations? An alternative explanation. (English) Zbl 1447.92134

Summary: Comment to A. Kowald et al., J. Theor. Biol. 238, No. 4, 828–840 (2006; Zbl 1445.92111).

MSC:

92C40 Biochemistry, molecular biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

Citations:

Zbl 1445.92111
Full Text: DOI

References:

[1] Armstrong, J. S.; Whiteman, M.; Yang, H. Y.; Jones, D. P., The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat, Bioessays, 26, 894-900 (2004)
[2] Brand, M. D.; Esteves, T. C., Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3, Cell Metab., 2, 85-93 (2005)
[3] Brookes, P. S., Mitochondrial H+ leak and ROS generation: an odd couple, Free Radic. Biol. Med., 38, 12-23 (2005)
[4] Costa, V. M.; Amorim, M. A.; Quintanilha, A.; Moradas-Ferreira, P., Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7, Free Radic. Biol. Med., 33, 1507-1515 (2002)
[5] Flint, D. H.; Tuminello, J. F.; Emptage, M. H., The inactivation of Fe-S cluster containing hydro-lyases by superoxide, J. Biol. Chem., 268, 22369-22376 (1993)
[6] Gardner, R.; Salvador, A.; Moradas-Ferreira, P., Why does SOD overexpression sometimes enhance, sometimes decrease, hydrogen peroxide production? A minimalist explanation, Free Radic. Biol. Med., 32, 1351-1357 (2002)
[7] Imlay, J. A., Pathways of oxidative damage, Annu. Rev. Microbiol., 57, 395-418 (2003)
[8] Kowald, A.; Lehrach, H.; Klipp, E., J. Theor. Biol., 238, 828-840 (2006) · Zbl 1445.92111
[9] Ku, H. H.; Sohal, R. S., Comparison of mitochondrial prooxidant generation and antioxidant defenses between rat and pigeon—possible basis of variation in longevity and metabolic potential, Mech. Ageing Dev., 72, 67-76 (1993)
[10] Petlicki, J.; van de Ven, T. G.M., The equilibrium between the oxidation of hydrogen peroxide by oxygen and the dismutation of peroxyl or superoxide radicals in aqueous solutions in contact with oxygen, J. Chem. Soc. Faraday Trans., 94, 2763-2767 (1998)
[11] Qiao, F. Y.; Xing, K. Y.; Lou, M. F., Modulation of lens glycolytic pathway by thioltransferase, Exp. Eye Res., 70, 745-753 (2000)
[12] Rich, P. R., Electron and proton transfers through quinones and cytochrome bc complexes, Biochim. Biophys. Acta, 768, 53-79 (1984)
[13] Savageau, M. A., Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology (1976), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0398.92013
[14] Skulachev, V. P., Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169-202 (1996)
[15] Teixeira, H. D.; Schumacher, R. I.; Meneghini, R., Lower intracellular hydrogen peroxide levels in cells overexpressing CuZn-superoxide dismutase, Proc. Natl Acad. Sci. USA, 95, 7872-7875 (1998)
[16] Tretter, L.; dam-Vizi, V., Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress, Philos. Trans. R. Soc., London B Biol. Sci., 360, 2335-2345 (2005)
[17] Turrens, J. F., Superoxide production by the mitochondrial respiratory chain, Biosci. Rep., 17, 3-8 (1997)
[18] Weber, H.; Engelmann, S.; Becher, D.; Hecker, M., Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus, Mol. Microbiol., 52, 133-140 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.