×

On the explicit resolution of the mushy zone in the modelling of the continuous casting of alloys. (English) Zbl 1476.82012

Summary: In the continuous casting of alloys, it is well-known that the mushy zone is decisive for the final properties of the casting. Most numerical models for the process use enthalpy-based methods on fixed grids which determine the extent the mushy zone implicitly. Here, on the other hand, we develop a methodology for explicitly resolving the geometrical extent of the mushy zone; this involves a sharp-interface formulation to solve a dual moving boundary problem to locate the solidus and liquidus isotherms. The results compare favourably with those from enthalpy-based methods, and the advantages of our approach with respect to future multiphysics calculations are discussed.

MSC:

82D25 Statistical mechanics of crystals
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Mahmoudi, J.; Vynnycky, M.; Fredriksson, H., Modelling of fluid flow, heat transfer, solidification in the strip casting of copper base alloy. Part 3. Solidification - a theoretical study, Scand. J. Metall., 30, 3, 136-145 (2001)
[2] Mahmoudi, J.; Vynnycky, M.; Sivesson, P.; Fredriksson, H., An experimental and numerical study on the modelling of fluid flow, heat transfer and solidification in a copper continuous strip casting process, Mater. Trans., 44, 9, 1741-1751 (2003)
[3] Mahmoudi, J., Mathematical modelling of fluid flow, heat transfer and solidification in a strip continuous casting process, Int. J. Cast Metals Res., 19, 223-236 (2006)
[4] Fredriksson, H.; Åkerlind, U., Materials Processing during Casting (2006), Wiley
[5] Swaminathan, C. R.; Voller, V. R., A general enthalpy method for modeling solidification processes, Met. Trans. B, 23B, 651-664 (1992)
[6] Voller, V. R.; Peng, S., An enthalpy formulation based on an arbitrarily deforming mesh for solution of the Stefan problem, Comput. Mech., 14, 492-502 (1994) · Zbl 0813.76051
[7] Aboutalebi, M. R.; Hasan, M.; Guthrie, R. I.L., Numerical study of coupled turbulent flow and solidification for steel slab casters, Numer. Heat Transf., 28, 279-297 (1995)
[8] Aboutalebi, M. R.; Hasan, M.; Guthrie, R. I.L., Coupled turbulent flow, heat and solute transport in continuous casting processes, Metall. Mater. Trans. B, 26, 731-744 (1995)
[9] Thevik, H. J.; Mo, A.; Rusten, T., A mathematical model for surface segregation in aluminum direct chill casting, Metall. Mater. Trans. B, 39B, 135-142 (1999)
[10] Kristiansson, J.-O., Thermal stresses in the early stage of the solidification of steel, J. Therm. Stress., 5, 315-330 (1982)
[11] Schwerdtfeger, K.; Sato, M.; Tacke, K.-H., Stress formation in solidifying bodies. Solidification in a round continuous casting mold, Metall. Mater. Trans. B, 29B, 1057-1068 (1998)
[12] Vynnycky, M., An asymptotic model for the formation and evolution of air gaps in vertical continuous casting, Proc. R. Soc. A, 465, 1617-1644 (2009) · Zbl 1186.74037
[13] Vynnycky, M., A mathematical model for air-gap formation in vertical continuous casting: the effect of superheat, Trans. Ind. Inst. Met., 62, 495-498 (2009)
[14] Vynnycky, M., Air gaps in vertical continuous casting in round moulds, J. Eng. Maths, 68, 129-152 (2010) · Zbl 1310.76174
[15] Vynnycky, M., On the role of radiative heat transfer in air gaps in vertical continuous casting, Appl. Math. Mod., 37, 2178-2188 (2013) · Zbl 1349.80025
[16] Vynnycky, M., On the onset of air-gap formation in vertical continuous casting with superheat, Int. J. Mech. Sci., 73, 69-76 (2013)
[17] Carslaw, H. S.; Jaeger, J. C., Conduction of Heat in Solids (1959), Oxford University Press · Zbl 0972.80500
[18] Mitchell, S. L.; Vynnycky, M., Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems, Appl. Math. Comput., 215, 1609-1621 (2009) · Zbl 1177.80078
[19] Mitchell, S. L.; Vynnycky, M., On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions, J. Comput. Appl. Maths, 264, 49-64 (2014) · Zbl 1294.65089
[20] Voller, V. R., A similarity solution for the solidification of a multicomponent alloy, Int. J. Heat Mass Transfer, 40, 12, 2869-2877 (1997) · Zbl 0921.76175
[21] Voller, V. R., A numerical scheme for solidification of an alloy, Can. Metall. Q., 37, 169-177 (1998)
[22] Reddy, A. V.; Beckermann, C., Modeling of macrosegregation due to thermosolutal convection and contraction-driven flow in direct chill continuous casting of an Al-Cu round ingot, Metall. Mater. Trans. B, 28B, 479-489 (1997)
[23] Jalanti, T.; Swierkosz, M.; Gremaud, M.; Rappaz, M., Modelling of macrosegregation in continuous casting of aluminium, (Ehrke, K.; Schneider, W., Continuous Casting (2006), WILEY-VCH Verlag GmbH: WILEY-VCH Verlag GmbH Weinheim), 191-198
[24] Mitchell, S. L.; Vynnycky, M., Verified reduction of a model for a continuous casting process, Appl. Math. Mod., 48, 476-490 (2017) · Zbl 1480.80011
[25] Saleem, S.; Vynnycky, M.; Fredriksson, H., Formation of the tin rich layer and inverse segregation in phosphor bronzes during continuous casting, Proceedings of The Minerals, Metals and Materials Society (TMS) 2015 144th Annual Meeting and Exhibition, 15-22 (2015), Orlando, Florida
[26] Mitchell, S. L.; Vynnycky, M.; Gusev, I. G.; Sazhin, S. S., An accurate numerical solution for the transient heating of an evaporating droplet, Appl. Math. Comput., 217, 9219-9233 (2011) · Zbl 1223.80009
[27] Vynnycky, M.; Mitchell, S. L., On the numerical solution of a Stefan problem with finite extinction time, J. Comput. Appl. Math., 276, 98-109 (2015) · Zbl 1300.80006
[28] Mitchell, S. L.; Vynnycky, M., The oxygen diffusion problem: analysis and numerical solution, Appl. Math. Mod., 39, 2763-2776 (2015) · Zbl 1443.65134
[29] Mitchell, S. L.; Vynnycky, M., On the accurate numerical solution of a two-phase Stefan problem with phase formation and depletion, J. Comput. Appl. Maths, 300, 259-274 (2016) · Zbl 1382.80006
[30] Cebeci, T.; Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer (1984), Springer-Verlag · Zbl 0545.76090
[31] Cebeci, T.; Bradshaw, P., Momentum Transfer in Boundary Layers (1977), Hemisphere Publishing Corporation: Hemisphere Publishing Corporation Washington · Zbl 0424.76023
[32] Cebeci, T.; Cousteix, J., Modeling and Computation of Boundary-Layer Flows (2005), Springer
[33] Florio, B. J.; Vynnycky, M.; Mitchell, S. L.; O’Brien, S. B.G., On the interactive effects of mould taper and superheat on air gaps in continuous casting, Acta Mechanica, 228, 233-254 (2017) · Zbl 1401.74073
[34] Florio, B. J.; Vynnycky, M.; Mitchell, S. L.; O’Brien, S. B.G., Mould-taper asymptotics and air gap formation in continuous casting, Appl. Math. Comput., 268, 1122-1139 (2015) · Zbl 1410.74018
[35] Mitchell, S. L.; Vynnycky, M., An accurate finite-difference method for ablation-type Stefan problems, J. Comput. Appl. Maths, 236, 4181-4192 (2012) · Zbl 1247.65119
[36] Rogberg, B., Testing and application of a computer-program for simulating the solidification process of a continuously cast strand, Scand. J. Metall., 12, 13-21 (1983)
[37] Vynnycky, M.; Mitchell, S. L., On the accuracy of a finite-difference method for parabolic PDEs with discontinuous boundary conditions, Numer. Heat Transf. B, 64, 275-292 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.