×

The null distance encodes causality. (English) Zbl 1511.83004

Summary: A Lorentzian manifold, \(N\), endowed with a time function, \(\tau\), can be converted into a metric space using the null distance, \(\hat{d}_\tau\), defined by C. Sormani and C. Vega [Classical Quantum Gravity 33, No. 8, Article ID 085001, 29 p. (2016; Zbl 1337.83015)]. We show that if the time function is a regular cosmological time function as studied by L. Andersson et al. [Classical Quantum Gravity 15, No. 2, 309–322 (1998; Zbl 0911.53039)], and also by R. M. Wald and P. Yip [“On the existence of simultaneous synchronous coordinates in spacetimes with spacelike singularities”, J. Math. Phys. 22, No. 11, 2659–2665 (1981; doi:10.1063/1.524844)], or if, more generally, it satisfies the anti-Lipschitz condition of P. T. Chruściel et al. [Ann. Henri Poincaré 17, No. 10, 2801–2824 (2016; Zbl 1351.83006)], then the causal structure is encoded by the null distance in the following sense: for any \(p\in N\), there is an open neighborhood \(U_p\) such that for any \(q\in U_p\), we have \(\hat{d}_\tau(p, q) = \tau(q) - \tau(p)\) if and only if \(q\) lies in the causal future of \(p\). The local encoding of causality can be applied to prove the global encoding of causality in a variety of settings, including spacetimes \(N\) where \(\tau\) is a proper function. As a consequence, in dimension \(n + 1\), \(n \geq 2\), we prove that if there is a bijective map between two such spacetimes, \(F: M_1\rightarrow M_2\), which preserves the cosmological time function, \(\tau_2(F(p)) = \tau_1(p)\) for any \(p \in M_1\), and preserves the null distance, \(\hat{d}_{\tau_2}(F(p), F(q)) = \hat{d}_{\tau_1}(p, q)\) for any \(p, q\in M_1\), then there is a Lorentzian isometry between them, \(F_\ast g_1 = g_2\). This yields a canonical procedure allowing us to convert large classes of spacetimes into unique metric spaces with causal structures and time functions. This will be applied in our upcoming work to define spacetime intrinsic flat convergence.
©2023 American Institute of Physics

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83F05 Relativistic cosmology
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53Z05 Applications of differential geometry to physics

References:

[1] Sormani, C., “Oberwolfach report 2018: Spacetime intrinsic flat convergence,” Oberwolfach Report No. 36/2018, 2018.
[2] Sormani, C.; Vega, C., Null distance on a spacetime, Classical Quant. Grav., 33, 8, 085001 (2016) · Zbl 1337.83015 · doi:10.1088/0264-9381/33/7/085001
[3] Andersson, L.; Galloway, G. J.; Howard, R., The cosmological time function, Classical Quant. Grav., 15, 2, 309-322 (1998) · Zbl 0911.53039 · doi:10.1088/0264-9381/15/2/006
[4] Wald, R. M.; Yip, P., On the existence of simultaneous synchronous coordinates in spacetimes with spacelike singularities, J. Math. Phys., 22, 2659-2665 (1981) · doi:10.1063/1.524844
[5] Ebrahimi, N., Some observations on cosmological time functions, J. Math. Phys., 54, 5, 052503 (2013) · Zbl 1285.83024 · doi:10.1063/1.4807429
[6] Chruściel, P. T.; Grant, J. D. E.; Minguzzi, E., On differentiability of volume time functions, Ann. Henri Poincare, 17, 10, 2801-2824 (2016) · Zbl 1351.83006 · doi:10.1007/s00023-015-0448-3
[7] Allen, B.; Burtscher, A., Properties of the null distance and spacetime convergence, Int. Math. Res. Not., 2022, 10, 7729-7808 · Zbl 1507.83083 · doi:10.1093/imrn/rnaa311
[8] Vega, C., Spacetime distances: An exploration (2021)
[9] Kunzinger, M.; Steinbauer, R., Null distance and convergence of Lorentzian length spaces, Ann. Henri Poincare, 23, 12, 4319-4342 (2022) · Zbl 1509.53049 · doi:10.1007/s00023-022-01198-6
[10] Graf, M.; Sormani, C., Lorentzian area and volume estimates for integral mean curvature bounds, International Meeting on Lorentzian Geometry, 105-128 (2022), Springer · Zbl 1514.53103
[11] Minguzzi, E., Lorentzian causality theory, Living Rev. Relativ., 22, 3 (2019) · Zbl 1442.83021 · doi:10.1007/s41114-019-0019-x
[12] Sakovich, A. and Sormani, C., “Spacetime intrinsic flat convergence of cosmological integral current spacetimes,” (unpublished). · Zbl 1380.83085
[13] Harris, S. G., A triangle comparison theorem for Lorentz manifolds, Indiana Univ. Math. J., 31, 3, 289-308 (1982) · Zbl 0496.53042 · doi:10.1512/iumj.1982.31.31026
[14] Alexander, S. B.; Bishop, R. L., Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds, Commun. Anal. Geom., 16, 2, 251-282 (2008) · Zbl 1149.53040 · doi:10.4310/cag.2008.v16.n2.a1
[15] Chruściel, P. T.; Grant, J. D. E., On Lorentzian causality with continuous metrics, Classical Quant. Grav., 29, 14, 145001 (2012) · Zbl 1246.83025 · doi:10.1088/0264-9381/29/14/145001
[16] Burtscher, A. Y., Length structures on manifolds with continuous Riemannian metrics, New York J. Math., 21, 273-296 (2015) · Zbl 1342.53054
[17] Kunzinger, M.; Sämann, C., Lorentzian length spaces, Ann. Global Anal. Geom., 54, 3, 399-447 (2018) · Zbl 1501.53057 · doi:10.1007/s10455-018-9633-1
[18] Alexander, S. B.; Graf, M.; Kunzinger, M.; Sämann, C., Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems, Comm. Anal. Geom.
[19] Graf, M.; Ling, E., Maximizers in Lipschitz spacetimes are either timelike or null, Classical Quant. Grav., 35, 8, 087001 (2018) · Zbl 1409.83023 · doi:10.1088/1361-6382/aab259
[20] Cavalletti, F.; Mondino, A., Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications (2020)
[21] McCann, R. J.; Sämann, C., A Lorentzian analog for Hausdorff dimension and measure, Pure Appl. Anal., 4, 2, 367-400 (2022) · Zbl 1505.28008 · doi:10.2140/paa.2022.4.367
[22] Hau, L. A.; Cabrera Pacheco, A. J.; Solis, D. A., On the causal hierarchy of Lorentzian length spaces, Classical Quant. Grav., 37, 21, 215013 (2020) · Zbl 1479.83258 · doi:10.1088/1361-6382/abb25f
[23] Burtscher, A.; Garcia-Heveling, L., Time functions on Lorentzian length spaces (2021)
[24] Temple, G., New systems of normal co-ordinates for relativistic optics, Proc. R. Soc. London, Ser. A, 168, 932, 122-148 (1938) · Zbl 0019.38001 · doi:10.1098/rspa.1938.0164
[25] Levichev, A. V., The causal structure of a Lorentzian manifold determines its conformal geometry, Dokl. Akad. Nauk SSSR, 293, 6, 1301-1305 (1987)
[26] Hawking, S., Singularities and the geometry of spacetime, Eur. Phys. J. H, 39, 413-503 (2014) · doi:10.1140/epjh/e2014-50013-6
[27] Zeeman, E. C., Causality implies the Lorentz group, J. Math. Phys., 5, 490 (1964) · Zbl 0133.23205 · doi:10.1063/1.1704140
[28] Christodoulou, D.; Klainerman, S., The nonlinear stability of the Minkowski metric in general relativity, Nonlinear Hyperbolic Problems, 128-145 (1989), Springer · Zbl 0695.53061
[29] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity (1983), Academic Press · Zbl 0531.53051
[30] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry (2022), American Mathematical Society · Zbl 0981.51016
[31] Hawking, S. W.; King, A. R.; McCarthy, P. J., A new topology for curved space-time which incorporates the causal, differential, and conformal structures, J. Math. Phys., 17, 2, 174-181 (1976) · Zbl 0319.54005 · doi:10.1063/1.522874
[32] Malament, D. B., The class of continuous timelike curves determines the topology of spacetime, J. Math. Phys., 18, 7, 1399-1404 (1977) · Zbl 0355.53033 · doi:10.1063/1.523436
[33] Sormani, C.; Wenger, S., The intrinsic flat distance between Riemannian manifolds and other integral current spaces, J. Differ. Geom., 87, 1, 117-199 (2011) · Zbl 1229.53053 · doi:10.4310/jdg/1303219774
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.