×

Reduction arguments for geometric inequalities associated with asymptotically hyperboloidal slices. (English) Zbl 1332.83013

Summary: We consider several geometric inequalities in general relativity involving mass, area, charge, and angular momentum for asymptotically hyperboloidal initial data. We show how to reduce each one to the known maximal (or time symmetric) case in the asymptotically flat setting, whenever a geometrically motivated system of elliptic equations admits a solution.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C57 Black holes
53Z05 Applications of differential geometry to physics
83C25 Approximation procedures, weak fields in general relativity and gravitational theory

References:

[1] Andersson L, Cai M and Galloway G 2008 Rigidity and positivity of mass for asymptotically hyperbolic manifolds Ann. Henri Poincaré9 1–33 · Zbl 1134.81037 · doi:10.1007/s00023-007-0348-2
[2] Balehowsky T and Woolgar E 2012 The Ricci flow of asymptotically hyperbolic mass and applications J. Math. Phys.53 072501 · Zbl 1279.83034 · doi:10.1063/1.4732118
[3] Bartnik R and Chruściel P 2005 Boundary value problems for Dirac-type equations J. Reine Angew. Math.579 13–73 · Zbl 1174.58305 · doi:10.1515/crll.2005.2005.579.13
[4] Bray H 2001 Proof of the Riemannian Penrose inequality using the positive mass theorem J. Differ. Geom.59 177–267 · Zbl 1039.53034
[5] Bray H and Khuri M 2010 A Jang equation approach to the Penrose inequality Discrete Contin. Dyn. Syst.27 741766 · Zbl 1193.53169 · doi:10.3934/dcds.2010.27.741
[6] Bray H and Khuri M 2011 P.D.E.’s which imply the Penrose conjecture Asian J. Math.15 557–610 · Zbl 1244.83016 · doi:10.4310/AJM.2011.v15.n4.a5
[7] Cha Y S and Khuri M A 2015 Deformations of axially symmetric initial data and the mass–angular momentum inequality Ann. Henri Poincaré16 841–96 · Zbl 1311.83021 · doi:10.1007/s00023-014-0332-6
[8] Cha Y S and Khuri M A 2015 Deformations of Charged axially symmetric initial data and the mass–angular momentum–charge inequality Ann. Henri Poincaré16 2881–918 · Zbl 1330.83017 · doi:10.1007/s00023-014-0378-5
[9] Chen P-N, Wang M-T and Yau S-T 2014 Conserved quantities and asymptotically hyperbolic initial data sets arXiv:1409.1812
[10] Choquet-Bruhat Y 2009 General Relativity and the Einstein Equations (Oxford: Oxford University Press) · Zbl 1157.83002
[11] Chruściel P 2008 Mass and angular-momentum inequalities for axi-symmetric initial data sets: I. Positivity of mass Ann. Phys.323 2566–90 · Zbl 1151.83008 · doi:10.1016/j.aop.2007.12.010
[12] Chruściel P and Costa J 2009 Mass, angular-momentum and charge inequalities for axisymmetric initial data Class. Quantum Grav.26 235013 · Zbl 1181.83015
[13] Chruściel P, Jezierski J and Łȩski S 2004 The Trautman–Bondi mass of hyperboloidal initial data sets Adv. Theor. Math. Phys.8 83–139 · Zbl 1086.81066 · doi:10.4310/ATMP.2004.v8.n1.a2
[14] Chruściel P, Li Y and Weinstein G 2008 Mass and angular-momentum inequalities for axi-symmetric initial data sets: II. Angular momentum Ann. Phys.323 2591–613 · Zbl 1151.83009 · doi:10.1016/j.aop.2007.12.011
[15] Chruściel P, Reall H and Tod P 2006 On Israel–Wilson–Perjes black holes Class. Quantum Grav.23 2519–40
[16] Clement M, Jaramillo J and Reiris M 2012 Proof of the area-angular momentum–charge inequality for axisymmetric black holes Class. Quantum Grav.30 065017 · Zbl 1267.83056
[17] Cortier J, Dahl M and Gicquaud R Mass-like invariants for asymptotically hyperbolic metrics in preparation
[18] Costa J 2010 Proof of a Dain inequality with charge J. Phys. A: Math. Theor.43 285202
[19] Dahl M and Sakovich A 2015 A density theorem for asymptotically hyperbolic initial data satisfying the dominant energy condition arXiv:1502.07487
[20] Dain S 2008 Proof of the angular momentum-mass inequality for axisymmetric black hole J. Differ. Geom.79 33–67 · Zbl 1157.83013
[21] Dain S, Khuri M, Weinstein G and Yamada S 2013 Lower bounds for the area of black holes, in terms of mass, charge, and angular momentum Phys. Rev. D 88 024048 · doi:10.1103/PhysRevD.88.024048
[22] Disconzi M and Khuri M 2012 On the Penrose inequality for charged black holes Class. Quantum Grav.29 245019 · Zbl 1260.83034
[23] Gibbons G, Hawking S, Horowitz G and Perry M 1983 Positive mass theorem for black holes Commun. Math. Phys.88 295–308 · doi:10.1007/BF01213209
[24] Han Q and Khuri M 2013 Existence and blow-up behavior for solutions of the generalized Jang equation Commun. PDE38 2199–237 · Zbl 1319.35261 · doi:10.1080/03605302.2013.837919
[25] Han Q and Khuri M 2014 The conformal flow of metrics and the general Penrose inequality Proc. 3rd Conf. Tsinghua Sanya Math. Forum (to appear arXiv:1409.0067)
[26] Huang L-H, Schoen R and Wang M-T 2011 Specifying angular momentum and center of mass for vacuum initial data sets Commun. Math. Phys.306 785803 · Zbl 1227.83008 · doi:10.1007/s00220-011-1295-9
[27] Huang W-L, Yau S-T and Zhang X 2006 Positivity of the Bondi mass in Bondi’s radiating spacetimes Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.17 335349 · Zbl 1223.53052 · doi:10.4171/RLM/472
[28] Huisken G and Ilmanen T 2001 The inverse mean curvature flow and the Riemannian Penrose inequality J. Differ. Geom.59 353–437 · Zbl 1055.53052
[29] Huisken G and Ilmanen T 2008 Higher regularity of the inverse mean curvature flow J. Differ. Geom.80 433–51 · Zbl 1161.53058
[30] Jang P-S 1978 On the positivity of energy in General Relaitivity J. Math. Phys.19 1152–5 · doi:10.1063/1.523776
[31] Jang P-S 1979 Note on cosmic censorship Phys. Rev. D 20 834–8 · doi:10.1103/PhysRevD.20.834
[32] Khuri M and Weinstein G 2013 Rigidity in the positive mass theorem with charge J. Math. Phys.54 092501 · Zbl 1304.83011 · doi:10.1063/1.4820469
[33] Khuri M and Sokolowsky B 2015 Existence of Brill coordinates for initial data with asymptotically cylindrical ends and applications, in preparation
[34] Khuri M and Weinstein G 2015 The Positive mass theorem for multiple rotating charged black holes arXiv:1502.06290
[35] Khuri M, Weinstein G and Yamada S 2015 Extensions of the charged Riemannian Penrose inequality Class. Quantum Grav.32 035019 · Zbl 1312.83024
[36] Khuri M, Weinstein G and Yamada S 2015 Proof of the Riemannian Penrose inequality with charge for multiple black holes arXiv:1409.3271 · Zbl 1348.83049
[37] Lee J 1995 The spectrum of an asymptotically hyperbolic Einstein manifold Commun. Anal. Geom.3 253–71
[38] Mars M 2009 Present status of the Penrose inequality Class. Quantum Grav.26 193001
[39] Michel B 2011 Geometric invariance of mass-like asymptotic invariants J. Math. Phys.52 052504 · Zbl 1317.83030 · doi:10.1063/1.3579137
[40] Parker T and Taubes C 1982 On Witten’s proof of the positive energy theorem Commun. Math. Phys.84 223–38 · Zbl 0528.58040 · doi:10.1007/BF01208569
[41] Penrose R 1973 Naked singularities Ann. New York Acad. Sci.224 125–34 · doi:10.1111/j.1749-6632.1973.tb41447.x
[42] Penrose R 1982 Some unsolved problems in classical general relativity Semin. Differ. Geom. Ann. Math. Study102 631–68
[43] Sakovich A 2012 A study of asymptotically hyperbolic manifolds in mathematical relativity PhD Thesis KTH Stockholm (http://diva-portal.org/smash/get/diva2:557156/FULLTEXT01.pdf)
[44] Sakovich A A Jang equation approach to positive mass theorem for asymptotically hyperbolic manifolds in preparation
[45] Schoen R and Yau S-T 1979 On the proof of the positive mass conjecture in general relativity Commun. Math. Phys.65 4576 · Zbl 0405.53045 · doi:10.1007/BF01940959
[46] Schoen R and Yau S-T 1981 Proof of the positive mass theorem II Commun. Math. Phys.79 231–60 · Zbl 0494.53028 · doi:10.1007/BF01942062
[47] Schoen R and Yau S-T 1982 Proof that the Bondi mass is positive Phys. Rev. Lett.48 369371 · doi:10.1103/PhysRevLett.48.369
[48] Schoen R and Zhou X 2013 Convexity of reduced energy and mass angular momentum inequalities Ann. Henri Poincaré14 1747–73 · Zbl 1278.83011 · doi:10.1007/s00023-013-0240-1
[49] Smith B and Weinstein G 2004 Quasiconvex foliations and asymptotically flat metrics of non-negative scalar curvature Commun. Anal. Geom.12 511–51 · Zbl 1073.53039 · doi:10.4310/CAG.2004.v12.n3.a2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.