×

A numerical characterization of ball quotients for normal surfaces with branch loci. (English) Zbl 0704.53053

The authors show that Kähler-Einstein geometry fits in with the theory of minimal models for normal surfaces with branch loci. From this they obtain an inequality of Miyaoka-Yau type for canonical normal surfaces with branch loci and with at worst log-canonical singularities and the equality characterizes ball quotients with finite volume. Details of this note can be found in F. Sakai’s survey paper [Algebraic geometry, Proc. Summer Res. Inst., Brunswick/Maine 1985, part 1, Proc. Symp. Pure Math. 46, 451-465 (1987; Zbl 0636.14013), M. Nakamura’s master thesis (Saitama University 1989), and R. Kobayashi’s article [Uniformization of complex surfaces (preprint)].
Reviewer: Gh.Pitiş

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
32C20 Normal analytic spaces

Citations:

Zbl 0636.14013
Full Text: DOI

References:

[1] S. Y. Cheng and S. T. Yau: Comm. Pure Appl. Math., 33, 507-544 (1980). · Zbl 0506.53031 · doi:10.1002/cpa.3160330404
[2] S. Y. Cheng and S. T. Yau: Contemp. Math., 49, 31-43 (1986). · Zbl 0597.53052
[3] R. Kobayashi: Tohoku Math. J., 37, 43-77 (1985). · Zbl 0582.53046 · doi:10.2748/tmj/1178228722
[4] R. Kobayashi: Math. Ann., 272, 385-398 (1985). · Zbl 0556.14019 · doi:10.1007/BF01455566
[5] R. Kobayashi: Uniformization of complex surfaces (preprint). · Zbl 0755.32024
[6] Y. Miyaoka: Invent. Math., 42, 225-237 (1977). · Zbl 0374.14007 · doi:10.1007/BF01389789
[7] Y. Miyaoka: Math. Ann., 268, 159-171 (1984). · Zbl 0521.14013 · doi:10.1007/BF01456083
[8] N. Mok: Compactification of complete Kahler surfaces of finite volume satisfying certain curvature conditions (preprint). JSTOR: · Zbl 0672.32012 · doi:10.2307/1971451
[9] N. Mok and J. Q. Zhong: Compactifying complete Kahler-Einstein manifolds of finite topological type and bounded curvature (preprint). JSTOR: · Zbl 0682.53065 · doi:10.2307/1971513
[10] D. Mumford: Publ. Math. I.H.E.S., 9, 5-22 (1961). · Zbl 0108.16801 · doi:10.1007/BF02698717
[11] S. Nakamura: Master Thesis, Saitama University (1989).
[12] A. Nadel and H. Tsuji: J. Differential Geom., 28, 503-512 (1988). · Zbl 0661.53047
[13] F. Sakai: Math. Ann., 254, 89-120 (1980). · Zbl 0431.14011 · doi:10.1007/BF01467073
[14] F. Sakai: Duke Math. J., 51, 877-887 (1984). · Zbl 0602.14006 · doi:10.1215/S0012-7094-84-05138-X
[15] F. Sakai: Proc. Symp. Pure Math., 46, 451-465 (1987). · Zbl 0636.14013
[16] Y. T. Siu and S. T. Yau: Seminar on Differential Geometry. Ann. of Math. Studies 102, Princeton University Press, Princeton, NJ, 1982, pp. 363-380. · Zbl 0493.53049
[17] H. Tsuji: Tohoku Math. J., 40, 591-597 (1988). · Zbl 0661.53048 · doi:10.2748/tmj/1178227923
[18] S. T. Yau: Amer. J. Math., 100, 197-203 (1978). JSTOR: · Zbl 0424.53040 · doi:10.2307/2373880
[19] S. T. Yau: Proc. Nat. Acad. Sci. USA, 74, 1798-1799 (1977). JSTOR: · Zbl 0355.32028 · doi:10.1073/pnas.74.5.1798
[20] S. T. Yau: Comm. Pure Appl. Math., 31, 339-411 (1978). · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.