×

The degree of rational cuspidal curves. (English) Zbl 0661.14023

Let C be an irreducible complex plane curve. By a cusp we mean not only a simple cusp \(y^ 2=x^ 3\) but also any unibranched singular point. We say that C is cuspidal if C has only cusps as its singular points. It turns out that cuspidal curves are rather special. In this article we consider the rational case. For examples of rational cuspidal curves, we refer to S. Abhyankar and T. Moh [J. Reine Angew. Math. 276, 148-166 (1975; Zbl 0332.14004)], H. Yoshihara [Proc. Jap. Acad., Ser. A 55, 152-155 (1979; Zbl 0432.14019)] and H. Kashiwara [“Fonctions rationelles de type (0,1) sur l’espace projectif complexe a deux dimensions”, Osaka J. Math. 24, 521-577 (1987)].
We prove the following theorem: if C is a rational cuspidal plane curve of degree \( d,\) then \(d<3\nu\), where \(\nu\) is the maximum of the multiplicities of all cusps. This gives an affirmative answer to the ten years old conjecture of Yoshihara and Tsunoda. Previously, Tsunoda proved the weaker inequality \(d\leq 3\nu +2\) and Yoshihara has settled the cases \(\nu =2\) and \(\nu =3\), \(d\equiv 0\quad mod\quad 3.\) In our proof we use \((i)\quad \det ailed\) analysis of local invariants of cusps, \((ii)\quad \log -Miyaoka\) inequality, \((iii)\quad Zariski's\) theorem on multiple planes.
Reviewer: T.Matsuoka

MSC:

14H20 Singularities of curves, local rings
13H15 Multiplicity theory and related topics

References:

[1] [AM] Abyankar, S., Moh, T.: Embeddings of the line in the plane. J. Reine Angew. Math.276, 148-166 (1975) · Zbl 0332.14004
[2] [BPV] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Berlin, Heidelberg, New York: Springer 1984 · Zbl 0718.14023
[3] [BK] Brieskorn, E., Kn?rrer, H.: Plane algebraic curves. Basel, Boston, Stuttgart: Birkh?user 1986
[4] [C] Coolidge, J.L.: A treatise on algebraic plane curves. Oxford: Oxford Univ. Press 1928 · JFM 54.0684.02
[5] [G] Gizatullin, M.H.: Review to the paper [MS]. Math. Review 82k. No. 14013 (1982) · Zbl 0509.14011
[6] [GD] Gizatullin, M.H., Danilov, V.I.: Automorphisms of affine surfaces. I. Math. USSR Izv.9, 493-534 (1975) · Zbl 0331.14007 · doi:10.1070/IM1975v009n03ABEH001489
[7] [I 1] Iitaka, S.: Algebraic geometry. Berlin Heidelberg New York: Springer 1981 · Zbl 0491.14005
[8] [I 2] Iitaka, S.: On irreducible plane curves. Saitama Math. J.1, 47-63 (1983) · Zbl 0517.14009
[9] [Iv] Ivinskis, K.: Normale Fl?chen und die Miyaoka-Kobayashi Ungleichung Diplomarbeit Bonn 1985
[10] [H] Hirzebruch, F.: Singularities of algebraic surfaces and characteristic numbers. Contemp. Math.58, 141-155 (1986) · Zbl 0601.14030
[11] [Ka] Kashiwara, H.: Fonctions rationelles de type (0,1) sur l’espace projectif complexe a deux dimensions. Osaka Math. J.24, 521-577 (1987) · Zbl 0668.14017
[12] [Ki] Kizuka, T.: Rational functions of C*-type on the two-dimensional complex projective space. Tohoku Math. J.38, 123-178 (1986) · doi:10.2748/tmj/1178228540
[13] [Ko] Kohno, T.: Differential forms and the fundamental group of the complement of hypersurfaces. Proc. Symp. Pure Math.40, 655-662 (1983)
[14] [La 1] Laufer, H.: Normal two-dimensional singularities. Ann. Math. Stud.71 (1971) · Zbl 0245.32005
[15] [La 2] Laufer, H.: On ? for surface singularities. Proc. Symp. Pure Math.30, 45-50 (1977) · Zbl 0363.32009
[16] [Li] Libgober, A.: Alexander invariants on plane algebraic curves. Proc. Symp. Pure Math.40, 135-143 (1983)
[17] [Mil] Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Stud.61 (1968) · Zbl 0184.48405
[18] [Mim] Miyanishi, M.: Lectures on curves on rational and unirational surfaces. Bombay: Tata Institute of Fundamental Research 1978 · Zbl 0425.14008
[19] [MS] Miyanishi, M., Sugie, T.: On a projective plane curve whose complement has logarithmic Kodaira dimension??. Osaka J. Math.18, 1-11 (1981) · Zbl 0487.14008
[20] [Miy] Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann.26, 159-171 (1984) · doi:10.1007/BF01456083
[21] [MM] Mohan Kumar, N., Murthy, M.P.: Curves with negative self intersection on rational surfaces. J. Math. Kyoto Univ.22, 767-777 (1983) · Zbl 0509.14033
[22] [Nag] Nagata, M.: On rational surfaces. I. Mem. Coll. Sci. Univ. Kyoto32, 351-370 (1960) · Zbl 0100.16703
[23] [Nam] Namba, M.: Geometry of projective algebraic curves. New York, Basel: Dekker 1984 · Zbl 0556.14012
[24] [R] Randell, R.: Some topology of Zariski surfaces. (Lecture Notes in Math. 788, pp. 145-164.) Berlin Heidelberg New York: Springer 1979
[25] [Sa] Saito, H.: Fonctions enti?res qui se reduisent ? certains polynomes I. Osaka J. Math.9, 293-332 (1972) · Zbl 0248.32005
[26] [Sak 1] Sakai, F.: Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps. Math. Ann.254, 89-120 (1980) · doi:10.1007/BF01467073
[27] [Sak 2] Sakai, F.: Weil divisors on normal surfaces. Duke Math. J.51, 877-887 (1984) · Zbl 0602.14006 · doi:10.1215/S0012-7094-84-05138-X
[28] [Sum] Suzuki, M.: Propri?t?s topologiques des polynomes de deux variables complexes, et automorphisms alg?briques de l’espace C2. J. Math. Soc. Japan26, 241-257 (1974) · Zbl 0276.14001 · doi:10.2969/jmsj/02620241
[29] [Sus] Suzuki, S.: Birational geometry of birational pairs. Comment. Math. Univ. St. Paul32, 85-106 (1983) · Zbl 0534.14005
[30] [T] Tsunoda, S.: The complements of projective plane curves. RIMS-Kokyuroko446, 48-55 (1981)
[31] [Y 1] Yoshihara, H.: A problem on plane rational curves (in Japanese). Sugaku31, 256-261 (1979) · Zbl 0432.14019
[32] [Y 2] Yoshihara, H.: On plane rational curves. Proc. Japan Acad. Ser. A55, 152-155 (1979) · Zbl 0432.14019 · doi:10.3792/pjaa.55.152
[33] [Y 3] Yoshihara, H.: Rational curves with one cusp. Proc. Am. Math. Soc.89, 24-26 (1983) · Zbl 0579.14024 · doi:10.1090/S0002-9939-1983-0706501-0
[34] [Y 4] Yoshihara, H.: Rational curves with one cusp. II. Proc. Am. Math. Soc.100, 405-406 (1987) · Zbl 0632.14025 · doi:10.1090/S0002-9939-1987-0891134-X
[35] [Y 5] Yoshihara, H.: A note on the existence of some curves. (Algebraic geometry and commutative algebra in honor of M. Nagata, pp. 801-804.) Tokyo: Kinokuniya 1987
[36] [Y 6] Yoshihara, H.: Plane curves whose singular points are cusps and triple coverings of ?2. Preprint · Zbl 0708.14017
[37] [Z 1] Zariski, O.: On the linear connection index of the algebraic surfacez n =f(x,y). Proc. Nat. Acad. Sci.15, 494-501 (1929) · JFM 55.0806.02 · doi:10.1073/pnas.15.6.494
[38] [Z 2] Zariski, O.: Studies in equisingularity. III. Am. J. Math.90, 961-1023 (1968) · Zbl 0189.21405 · doi:10.2307/2373492
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.