×

Study of Yang-Mills condensate dark energy in the framework of generalized Brans-Dicke theory. (English) Zbl 1537.83136

Summary: The prediction about the accelerating expansion of the universe introduced the concept of dark energy. Since then, a plethora of work has been done to explain the origin and nature of dark energy. This work deals with the possibility of obtaining cosmic acceleration of a new kind of dark energy, viz., Yang-Mills condensate dark energy in generalized Brans-Dicke theory with variable or constant \(\omega\) (Brans-Dicke parameter) and vanishing and non-vanishing self-interacting potential. We assume the scale factor and scalar field in power law form. Then we investigate the above model to determine whether the universe is accelerating. We obtain a redshift-dependent equation of state parameter, which describes the phase transition of the universe. We notice that the equation of the state parameter meets the \(\Lambda\) cold dark matter (CDM) limit in the far future. Then we study the \(w_D - w_D^\prime\) analysis to get the thawing or freezing region. We study the stability of the model by studying the square speed of sound. Last, the nature of the scalar field and the potential are analyzed for four cases.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C56 Dark matter and dark energy
83F05 Relativistic cosmology
Full Text: DOI

References:

[1] Riess, A. G.et al.Observational evidence from supernovae for an accelerating universe and a cosmological constantAstron. J.116199810091038arXiv:astro-ph/9805201https://doi.org/10.1086/300499
[2] Perlmutter, S.et al.Measurements of the cosmological parameters Omega and Lambda from the first 7 supernovae at z \(>\) Astrophys. J.4831997565arXiv:astro-ph/9608192https://doi.org/10.1086/304265
[3] Perlmutter, S.et al.Measurements of \(\operatorname{\Omega}\operatorname{\Lambda}\) Astrophys. J.5171999565586arXiv:astro-ph/9812133https://doi.org/10.1086/307221
[4] S. Weinberg, The cosmological constant problems, preprint (2000), arXiv:astro-ph/0005265
[5] Carroll, S. M.Living Rev. Relativ.420011arXiv:astro-ph/0004075 136
[6] Peebles, P. J. E.Ratra, B.The cosmological constant and dark energyRev. Mod. Phys.7522003559
[7] Padmanabhan, T.Cosmological constantthe weight of the vacuumPhys. Rep.3805-62003235320
[8] Ratra, B.Peebles, P. J.Cosmological consequences of a rolling homogeneous scalar fieldPhys. Rev. D371219883406
[9] Wetterich, C.Cosmology and the fate of dilatation symmetryNucl. Phys. B30241988668696
[10] Caldwell, R. R.Dave, R.Steinhardt, P. J.Cosmological imprint of an energy component with general equation of statePhys. Rev. Lett.80819981582
[11] Zlatev, I.Wang, L.Steinhardt, P. J.Quintessence, cosmic coincidence, and the cosmological constantPhys. Rev. Lett.8251999896
[12] Caldwell, R. R.A phantom menace? cosmological consequences of a dark energy component with super-negative equation of statePhys. Lett. B5451-220022329
[13] Carroll, S. M.Hoffman, M.Trodden, M.Can the dark energy equation-of-state parameter \(w\&\#60;1\) Phys. Rev. D6822003023509
[14] Caldwell, R. R.Kamionkowski, M.Weinberg, N. N.Phantom energy: Dark energy with \(w\&\#60;1\) Phys. Rev. Lett.9172003071301
[15] Armendariz-Picon, C.Damour, T.Mukhanov, V.K-inflationPhys. Lett. B4582-31999209218
[16] Armendariz-Picon, C.Mukhanov, V.Steinhardt, P. J.Essentials of kPhys. Rev. D63102001103510
[17] Chiba, T.Okabe, T.Yamaguchi, M.Kinetically driven quintessencePhys. Rev. D6222000023511
[18] Hu, W.Crossing the phantom divide: Dark energy internal degrees of freedomPhys. Rev. D7142005047301
[19] Feng, B.Wang, X.Zhang, X.Dark energy constraints from the cosmic age and supernovaPhys. Lett. B6071-220053541
[20] Zhao, W.Zhang, Y.Quintom models with an equation of state crossing- 1Phys. Rev. D73122006123509
[21] Padmanabhan, T.Accelerated expansion of the universe driven by tachyonic matterPhys. Rev. D6622002021301
[22] Bagla, J.Jassal, H. K.Padmanabhan, T.Cosmology with tachyon field as dark energyPhys. Rev. D6762003063504
[23] Li, M.A model of holographic dark energyPhys. Lett. B6031-2200415
[24] Huang, Q.-G.Li, M.The holographic dark energy in a non-flat universeJ. Cosmol. Astropart. Phys.200482004013
[25] Cai, R.-G.A dark energy model characterized by the age of the universePhys. Lett. B6574-52007228231
[26] Wei, H.Cai, R.-G.A new model of agegraphic dark energyPhys. Lett. B66032008113117
[27] Corasaniti, P. S.Kunz, M.Parkinson, D.Copeland, E.Bassett, B.Foundations of observing dark energy dynamics with the wilkinson microwave anisotropy probePhys. Rev. D7082004083006
[28] Hannestad, S.Mörtsell, E.Cosmological constraints on the dark energy equation of state and its evolutionJ. Cosmol. Astroparticle Phys.200492004001
[29] Upadhye, A.Ishak, M.Steinhardt, P. J.Dynamical dark energy: Current constraints and forecastsPhys. Rev. D7262005063501
[30] Armendariz-Picon, C.Could dark energy be vector-like?J. Cosmol. Astroparticle Phys.200472004007
[31] Kiselev, V.Vector field as a quintessence partnerClass. Quantum Grav.211320043323
[32] Boehmer, C.Harko, T.Dark energy as a massive vector fieldEur. Phys. J. C502007423429
[33] Beck, C.Mackey, M. C.Electromagnetic dark energyInt. J. Mod. Phys. D17120087180
[34] Bamba, K.Odintsov, S. D.Inflation and late-time cosmic acceleration in non-minimal maxwell-frJ. Cosmol. Astroparticle Phys.200842008024
[35] Bamba, K.Nojiri, S.Odintsov, S. D.Inflationary cosmology and the late-time accelerated expansion of the universe in nonminimal Yang-Mills- frfPhys. Rev. D77122008123532
[36] Koivisto, T.Mota, D. F.Vector field models of inflation and dark energyJ. Cosmol. Astroparticle Phys.200882008021
[37] Parker, L.Raval, A.Nonperturbative effects of vacuum energy on the recent expansion of the universePhys. Rev. D6061999063512
[38] Parker, L.Komp, W.Vanzella, D. A.Cosmological acceleration through transition to constant scalar curvatureAstrophys. J.58822003663
[39] Parker, L.Vanzella, D. A.Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernelPhys. Rev. D69102004104009
[40] Parker, L.Zhang, Y.Ultrarelativistic Bose-Einstein condensation in the einstein universe and energy conditionsPhys. Rev. D44819912421
[41] Zhang, Y.Yang, W.A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electronsJ. Chem. Phys.1097199826042608
[42] Xia, T.Zhang, Y.2-loop quantum Yang-Mills condensate as dark energyPhys. Lett. B6561-320071924
[43] Chen, P.Zhang, R.Zhao, Z.Xi, D.Shen, B.Chen, Z.Zhou, Y.Xie, S.Lu, W.Zheng, Y.Growth of high quality gan layers with aln buffer on si (1 1 1) substratesJ. Crystal Growth2252-42001150154
[44] Bo-Ming, Y.Jian-Hua, L.A geometry model for tortuosity of flow path in porous mediaChin. Phys. Lett.21820041569
[45] De Lorenci, V. A.Nonsingular and accelerated expanding universe from effective yang-mills theoryClass. Quantum Grav.2762010065007
[46] J. B. Jimenez, R. Lazkoz and A. L. Maroto, Cosmic vector for dark energy: Constraints from SN, CMB and BAO, preprint (2009), arXiv:0904.0433
[47] Jimenez, J. B.Maroto, A. L.Cosmological evolution in vector-tensor theories of gravityPhys. Rev. D8062009063512
[48] Razina, O.Tsyba, P. Y.Myrzakulov, R.Meirbekov, B.Shanina, Z.Cosmological Yang-Mills model with kJournal of Physics: Conference Series, 8th International Conference on Mathematical Modeling in Physical Science1391IOP Publishing2019012164
[49] Sadri, E.Vakili, B.A new holographic dark energy model in brans-dicke theory with logarithmic scalar fieldAstrophys. Space Sci.363201819
[50] A. Addazi, P. Donà and A. Marcianò, Dark energy and dark matter from yang-mills condensate and the peccei-quinn mechanism, preprint (2016), arXiv:1602.01772
[51] Wang, S.Zhang, Y.Xia, T.-Y.The three-loop yang-mills condensate dark energy model and its cosmological constraintsJ. Cosmol. Astroparticle Phys.2008102008037
[52] Fu, Z.Zhang, Y.Tong, M.Observational constraints on a yang-mills condensate dark energy modelClass. Quantum Grav.28222011225017
[53] Zhao, W.Attractor solution in coupled yang-mills field dark energy modelsInt. J. Mod. Phys. D189200913311342
[54] Zhang, Y.Xia, T.Zhao, W.Yang-Mills condensate dark energy coupled with matter and radiationClass. Quantum Grav.241320073309
[55] Saha, P.Debnath, U.Correspondence between Yang-Mills condensate dark energy with various kinds of scalar field models of dark energyCommun. Theor. Phys.6652016579
[56] Seljak, U.Slosar, A.McDonald, P.Cosmological parameters from combining the lyman-\( \alpha\) J. Cosmol. Astroparticle Phys.2006102006014
[57] Jordan, P.Schwerkraft und Weltall2Friedr, Vieweg and Sohn Verlag1955
[58] Brans, C.Dicke, R. H.Mach’s principle and a relativistic theory of gravitationPhys. Rev.12431961925
[59] Banerjee, N.Pavon, D.Cosmic acceleration without quintessencePhys. Rev. D6342001043504
[60] Nordtvedt, K.Post-newtonian metric for a general class of scalar-tensor gravitational theories and observational consequencesAstrophys. J.16119701059
[61] Wagoner, R. V.Scalar-tensor theory and gravitational wavesPhys. Rev. D11219703209
[62] Tripathy, S. K.Pradhan, S. K.Naik, Z.Behera, D.Mishra, B.Unified dark fluid and cosmic transit models in Brans-Dicke theoryPhys. Dark Univ.302020100722arXiv:2004.01027https://doi.org/10.1016/j.dark.2020.100722
[63] Sahoo, B.Singh, L.Cosmic evolution in generalised brans-dicke theoryMod. Phys. Lett. A1838200327252734
[64] Chakraborty, W.Debnath, U.Role of Brans-Dicke theory with or without self-interacting potential in cosmic accelerationInt. J. Theor. Phys.482009232247
[65] Tripathy, S. K.Behera, D.Mishra, B.Unified dark fluid in Brans-Dicke theoryEur. Phys. J. C7542015149arXiv:1410.3156https://doi.org/10.1140/epjc/s10052-015-3371-3
[66] Hatkar, S.Wadale, C.Katore, S.Viscous holographic dark energy in brans-dicke theory of gravitationAstrophys. Space Sci.365120207
[67] Zhang, Y.Inflation with quantum yang-mills condensatePhys. Lett. B3401-219941822
[68] Y. Zhang, Class. Quantum Grav.13Chin. Phys. Lett.14
[69] Zhang, Y.Strong energy condition of simple gauge field systemChin. Phys. Lett.151998622624https://doi.org/10.1088/0256-307X/15/8/029
[70] Zhang, Y.Violation of the weak energy condition by the inflationary Yang-Mills condensateChin. Phys. Lett.19200215691572https://doi.org/10.1088/0256-307X/19/10/352
[71] S. L. Adler, Effective Action Approach to Mean Field Nonabelian Statics, and a Model for Bag Formation, Phys. Rev. D23Phys. Rev. D24
[72] Adler, S. L.Short-distance perturbation theory for the leading logarithm modelsNucl. Phys. B21721983381394
[73] Adler, S. L.Piran, T.Relaxation methods for Gauge field equilibrium equationsRev. Mod. Phys.5619841https://doi.org/10.1103/RevModPhys.56.1
[74] Zhao, W.Zhang, Y.The state equation of the Yang-Mills field dark energy modelsClass. Quantum Grav.23200634053418arXiv:astro-ph/0510356https://doi.org/10.1088/0264-9381/23/10/011
[75] Zhang, Y.State of matter for effective Yang-Mills fields and energy conditionsGen. Relativ. Grav.34200221552161https://doi.org/10.1023/A:1021195720598
[76] Zhang, Y.A model of dark energy for the accelerating universeGen. Relativ. Grav.352003689696https://doi.org/10.1023/A:1022970219502
[77] Zhang, Y.Dark energy coupled with relativistic dark matter in accelerating universeChin. Phys. Lett.20200318991902https://doi.org/10.1088/0256-307X/20/10/369
[78] Zhang, Y.Dark energy coupled with dark matter in the accelerating universeChin. Phys. Lett.21200411831186https://doi.org/10.1088/0256-307X/21/6/057
[79] Zhang, Y.Xia, T. Y.Zhao, W.Yang-Mills condensate dark energy coupled with matter and radiationClass. Quantum Grav.24200733093338arXiv:gr-qc/0609115https://doi.org/10.1088/0264-9381/24/13/011
[80] Zhao, W.Zhang, Y.Coincidence Problem in YM field dark energy modelPhys. Lett. B64020066973arXiv:astro-ph/0604457https://doi.org/10.1016/j.physletb.2006.07.052
[81] Caldwell, R. R.Linder, E. V.The limits of quintessencePhys. Rev. Lett.952005141301arXiv:astro-ph/0505494https://doi.org/10.1103/PhysRevLett.95.141301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.