×

Rotational motion of fractional Maxwell fluids in a circular duct due to a time-dependent couple. (English) Zbl 1524.76020

Summary: The rotational motion of fractional Maxwell fluids in an infinite circular cylinder that applies a time-dependent but not oscillating couple stress to the fluid is investigated using the integral transform technique. Such a flow model was not analyzed in the past both for ordinary and fractional rate type fluids. This is due to their constitutive equations which contain differential expressions acting on the shear stresses. The obtained solutions fulfill all the enforced initial and boundary conditions and are easily reduced to the solutions of Newtonian or ordinary Maxwell fluids having similar motion. At the end, the influence of pertinent parameters on velocity and shear stress variations is graphically underlined and discussed.

MSC:

76A10 Viscoelastic fluids
35R11 Fractional partial differential equations

References:

[1] Shifang, H.: Constitutive Equation and Computational Analytical Theory of Non-Newtonian Fluids. Science Press, Beijing (2000) (in Chinese)
[2] Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. A 157, 26-78 (1866)
[3] Rajagopal, K.R., Srinivasa, A.R.: A thermodynamical frame-work for rate type fluid models. J. Non-Newton. Fluid Mech. 88, 207-227 (2000) · Zbl 0960.76005 · doi:10.1016/S0377-0257(99)00023-3
[4] Nayak, M.K.: Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium. Meccanica 51, 1699-1711 (2016) · Zbl 1388.76446 · doi:10.1007/s11012-015-0329-3
[5] Shateyi, S.: A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction. Bound. Value Probl. 2013, 196 (2013) · Zbl 1291.76234 · doi:10.1186/1687-2770-2013-196
[6] Shah, R.A., Rehman, S., Idrees, M., Ullah, M., Abbas, T.: Similarity analysis of MHD flow field and heat transfer of a second grade convection flow over an unsteady stretching sheet. Bound. Value Probl. 2017, 162 (2017) · Zbl 1379.35251 · doi:10.1186/s13661-017-0895-5
[7] Miyazaki, H.: Combined free and forced convective heat transfer and fluid flow in a rotating curved circular tube. Int. J. Heat Mass Transf. 14, 1295-1309 (1971) · doi:10.1016/0017-9310(71)90179-7
[8] Ishigaki, H.: Laminar flow in rotating curved pipes. J. Fluid Mech. 329, 373-388 (1996) · Zbl 0902.76094 · doi:10.1017/S0022112096008956
[9] Mukunda, P.G., Shailesh, R.A., Kiran, A.S., Shrikantha, S.R.: Experimental studies of flow patterns of different fluids in a partially filled rotating cylinder. J. Appl. Fluid Mech. 2, 39-43 (2009)
[10] Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000) · Zbl 0958.76001 · doi:10.1017/CBO9780511800955
[11] Ting, T.W.: Certain non-steady flows of second-order fluids. Arch. Ration. Mech. Anal. 14(1), 1-26 (1963) · Zbl 0139.20105 · doi:10.1007/BF00250690
[12] Srivastava, P.N.: Non-steady helical flow of a visco-elastic liquid. Arch. Mech. Stosow. 18(2), 145-150 (1966)
[13] Rahaman, K.D., Ramkissoon, H.: Unsteady axial viscoelastic pipe flows. J. Non-Newton. Fluid Mech. 57, 27-38 (1995) · doi:10.1016/0377-0257(94)01293-Q
[14] Fetecau, C., Fetecau, C.: Unsteady helical flows of a Maxwell fluid. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 5(1), 13-19 (2004) · Zbl 1150.76369
[15] Vieru, D., Akhtar, W., Fetecau, C., Fetecau, C.: Starting solutions for the oscillating motion of a Maxwell fluid in cylindrical domains. Meccanica 42, 573-583 (2007) · Zbl 1163.76321 · doi:10.1007/s11012-007-9081-7
[16] Jamil, M., Fetecau, C.: Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary. Nonlinear Anal., Real World Appl. 11(5), 4302-4311 (2010) · Zbl 1201.35159 · doi:10.1016/j.nonrwa.2010.05.016
[17] Jamil, M., Fetecau, C., Khan, N.A., Mahmood, A.: Some exact solutions for helical flows of Maxwell fluid in an annular pipe due to accelerated shear stresses. Int. J. Chem. React. Eng. 9, Article ID A20 (2011)
[18] Zeb, M., Haroon, T., Siddiqui, A.M.: Study of co-rotational Maxwell fluid in helical screw rheometer. Bound. Value Probl. 2015, 146 (2015) · Zbl 1342.35274 · doi:10.1186/s13661-015-0412-7
[19] Fetecau, C., Imran, M., Fetecau, C.: Taylor-Couette flow of an Oldroyd-B fluid in an annulus due to a time-dependent couple. Z. Naturforsch. 66a, 40-46 (2011) · doi:10.5560/ZNA.2011.66a0040
[20] Shah, N.A., Fetecau, C., Vieru, D.: First general solutions for unsteady unidirectional motions of rate type fluids in cylindrical domains. Alex. Eng. J. 57, 1185-1196 (2018) · doi:10.1016/j.aej.2017.03.014
[21] Povstenko, Y.Z.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Springer, Cham (2015) · Zbl 1331.35004 · doi:10.1007/978-3-319-17954-4
[22] Bagley, R.L., Torvik, P.J.: A theoretical basis for the applications of fractional calculus to viscoelasticity. J. Rheol. 27, 201-210 (1983) · Zbl 0515.76012 · doi:10.1122/1.549724
[23] Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134-147 (1971) · Zbl 1213.74005 · doi:10.1007/BF00879562
[24] Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento 1, 161-198 (1971) · doi:10.1007/BF02820620
[25] Makris, N., Dargush, G.F., Constantinou, M.C.: Dynamic analysis of generalized viscelastic fluids. J. Eng. Mech. 119, 1663-1679 (1993) · doi:10.1061/(ASCE)0733-9399(1993)119:8(1663)
[26] Imran, M., Athar, M., Kamran, M.: On the unsteady rotational flow of a generalized Maxwell fluid through a circular cylinder. Arch. Appl. Mech. 81(11), 1659-1666 (2011) · Zbl 1271.76365 · doi:10.1007/s00419-011-0509-0
[27] Kamran, M., Imran, M., Athar, M., Imran, M.A.: On the unsteady rotational flow of fractional Oldroyd-B fluid in cylindrical domains. Meccanica 47(3), 573-584 (2012) · Zbl 1293.76030 · doi:10.1007/s11012-011-9467-4
[28] Mathur, V., Khandewal, K.: Exact solution for the flow of Oldroyd-B fluid due to constant shear stress and time dependent velocity. IOSR J. Math. 10, 38-45 (2014) · doi:10.9790/5728-10423845
[29] Mathur, V., Khandelwal, K.: Exact solution for the flow of Oldroyd-B fluid between coaxial cylinders. Int. J. Eng. Res. Technol. 3, 949-954 (2017)
[30] Raza, N., Haque, E.U., Rashidi, M.M., Awan, A.U., Abdullah, M.: Oscillating motion of an Oldroyd-B fluid with fractional derivatives in a circular cylinder. J. Appl. Fluid Mech. 10, 1421-1426 (2017) · doi:10.18869/acadpub.jafm.73.242.27079
[31] Kamran, M., Imran, M., Athar, M.: Exact solutions for the unsteady rotational flow of a generalized Oldroyd-B fluid induced by a circular cylinder. Meccanica 48, 1215-1226 (2013) · Zbl 1293.76029 · doi:10.1007/s11012-012-9662-y
[32] Kamran, M., Imran, M., Athar, M.: Exact solutions for the unsteady rotational flow of a generalized second grade fluid through a circular cylinder. Nonlinear Anal., Model. Control 15, 437-444 (2010) · Zbl 1368.76005
[33] Sultan, Q., Nazar, M., Imran, M., Ali, U.: Flow of generalized Burgers fluid between parallel walls induced by rectified sine pulses stress. Bound. Value Probl. 2014, 152 (2014) · Zbl 1305.76008 · doi:10.1186/s13661-014-0152-0
[34] Qureshi, M.I., Imran, M., Athar, M., Kamran, M.: Analytic solutions for the unsteady rotational flow of an Oldroyd-B fluid with fractional derivatives induced by a quadratic time-dependent shear stress. Int. J. Appl. Comput. Math. 10, 484-497 (2011) · Zbl 1229.76004
[35] Fetecau, C., Rana, M., Nigar, N., Fetecau, C.: First exact solutions for flows of rate type fluids in a circular duct that applies a constant couple to the fluid. Z. Naturforsch. 69a, 232-238 (2014)
[36] Rauf, A., Zafar, A.A., Mirza, I.A.: Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary. Alex. Eng. J. 54(4), 973-979 (2015) · doi:10.1016/j.aej.2015.09.001
[37] Tong, D., Liu, Y.: Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Int. J. Eng. Sci. 43(3-4), 281-289 (2005) · Zbl 1211.76014 · doi:10.1016/j.ijengsci.2004.09.007
[38] Renardy, M.: Inflow boundary conditions for steady flows of viscoelastic fluids with differential constitutive laws. Rocky Mt. J. Math. 18, 445-453 (1988) · Zbl 0646.76009 · doi:10.1216/RMJ-1988-18-2-445
[39] Renardy, M.: An alternative approach to inflow boundary conditions for Maxwell fluids in three space dimensions. J. Non-Newton. Fluid Mech. 36, 419-425 (1990) · Zbl 0709.76014 · doi:10.1016/0377-0257(90)85022-Q
[40] Bandelli, R., Rajagopal, K.R.: Start-up flows of second grade fluids in domains with one finite dimension. Int. J. Non-Linear Mech. 30(6), 817-839 (1995) · Zbl 0866.76004 · doi:10.1016/0020-7462(95)00035-6
[41] Fetecau, C., Rubbab, Q., Akhter, S., Fetecau, C.: New methods to provide exact solutions for some unidirectional motions of rate type fluids. Therm. Sci. 20(1), 7-20 (2016) · doi:10.2298/TSCI130225130F
[42] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[43] Debnath, L., Bhatta, D.: Integral Transforms and Their Applications, 2nd edn. Chapman & Hall, Boca Raton (2007) · Zbl 1113.44001
[44] Lorenzo, C.F., Hartley, T.T.: Generalized functions for the fractional calculus. NASA/TP (1999)
[45] Fetecau, C., Awan, A.U., Fetecau, C.: Taylor-Couette flow of an Oldroyd-B fluid in a circular cylinder subject to a time-dependent rotation. Bull. Math. Soc. Sci. Math. Roum. 2, 117-128 (2009) · Zbl 1177.76011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.