×

Linearization and invariant manifolds on the carrying simplex for competitive maps. (English) Zbl 1436.37041

The authors prove that the restriction of the competitive map to the carrying simplex in a neighborhood of an interior fixed point is topologically conjugate to the restriction of the map to its pseudo-unstable manifold by an invariant foliation. The results are related to Hirsch’s problem regarding the smoothness of the carrying simplex.

MSC:

37D10 Invariant manifold theory for dynamical systems
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics

References:

[1] Hirsch, M. W., Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity, 1, 51-71 (1988) · Zbl 0658.34024
[2] Smith, H. L., Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differ. Equ., 64, 165-194 (1986) · Zbl 0596.34013
[3] Ortega, R.; Tineo, A., An exclusion principle for periodic competitive systems in three dimensions, Nonlinear Anal., 31, 883-893 (1998) · Zbl 0901.34049
[4] Wang, Y.; Jiang, J., Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differ. Equ., 186, 611-632 (2002) · Zbl 1026.37016
[5] Diekmann, O.; Wang, Y.; Yan, P., Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20, 37-52 (2008) · Zbl 1138.92031
[6] Hirsch, M. W., On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn., 2, 169-179 (2008) · Zbl 1152.92026
[7] Ruiz-Herrera, A., Exclusion and dominance in discrete population models via the carrying simplex, J. Differ. Equ. Appl., 19, 96-113 (2013) · Zbl 1303.92107
[8] Baigent, S., Convexity of the carrying simplex for discrete-time planar competitive Kolmogorov systems, J. Differ. Equ. Appl., 22, 609-622 (2016) · Zbl 1343.93055
[9] Jiang, J.; Niu, L.; Wang, Y., On heteroclinic cycles of competitive maps via carrying simplices, J. Math. Biol., 72, 939-972 (2016) · Zbl 1355.37042
[10] Jiang, J.; Niu, L., On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74, 1223-1261 (2017) · Zbl 1365.37063
[11] Jiang, J.; Niu, L., On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36, 217-244 (2016) · Zbl 1366.37049
[12] Gyllenberg, M.; Jiang, J.; Niu, L.; Yan, P., On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex, Discrete Contin. Dyn. Syst., 38, 615-650 (2018) · Zbl 1381.37030
[13] M. Gyllenberg, J. Jiang, L. Niu, P. Yan, On the dynamics of multi-species Ricker models admitting a carrying simplex, submitted for publication. · Zbl 1429.37010
[14] Gyllenberg, M.; Jiang, J.; Niu, L., A note on global stability of three-dimensional Ricker models, J. Differ. Equ. Appl., 25, 142-150 (2019) · Zbl 1406.37063
[15] Niu, L.; Ruiz-Herrera, A., Trivial dynamics in discrete-time systems: carrying simplex and translation arcs, Nonlinearity, 31, 2633-2650 (2018) · Zbl 1391.37018
[16] Jiang, J.; Mierczyński, J.; Wang, Y., Smoothness of the carrying simplex for discrete-time competitive dynamical systems: a characterization of neat embedding, J. Differ. Equ., 246, 1623-1672 (2009) · Zbl 1166.37009
[17] Brunovský, P., Controlling nonuniqueness of local invariant manifolds, J. Reine Angew. Math., 446, 115-135 (1994) · Zbl 0783.58061
[18] Mierczyński, J., The \(C^1\) property of carrying simplices for a class of competitive systems of ODEs, J. Differ. Equ., 111, 385-409 (1994) · Zbl 0804.34048
[19] Benaïm, M., On invariant hypersurfaces of strongly monotone maps, J. Differ. Equ., 137, 385-409 (1997)
[20] Mierczyński, J., On smoothness of carrying simplices, Proc. Am. Math. Soc., 127, 543-551 (1999) · Zbl 0912.34037
[21] Mierczyński, J., The \(C^1\) property of convex carrying simplices for competitive maps, Ergod. Theory Dyn. Syst. (2018) · Zbl 1401.37033
[22] Mierczyński, J., The \(C^1\) property of convex carrying simplices for three-dimensional competitive maps, J. Differ. Equ. Appl., 24, 1199-1209 (2018) · Zbl 1401.37033
[23] Zeeman, E. C.; Zeeman, M. L., On the convexity of carrying simplices in competitive Lotka-Volterra systems, (Differential Equations, Dynamical Systems, and Control Science. Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., vol. 152 (1994), Dekker: Dekker New York), 353-364 · Zbl 0799.92016
[24] Zeeman, E. C.; Zeeman, M. L., From local to global behavior in competitive Lotka-Volterra systems, Trans. Am. Math. Soc., 355, 713-734 (2002) · Zbl 1008.37055
[25] Baigent, S.; Hou, Z., Global stability of discrete-time competitive population models, J. Differ. Equ. Appl., 23, 1378-1396 (2017) · Zbl 1379.92046
[26] Baigent, S., Convex geometry of the carrying simplex for the May-Leonard map, Discrete Contin. Dyn. Syst., Ser. B, 24, 1697-1723 (2019) · Zbl 1415.37059
[27] Mierczyński, J., Smoothness of carrying simplices for three-dimensional competitive systems: a counterexample, Dyn. Contin. Discrete Impuls. Syst., 6, 149-154 (1999) · Zbl 0941.34034
[28] Pugh, C. C., On a theorem of P. Hartman, Am. J. Math., 91, 363-367 (1969) · Zbl 0197.20701
[29] Hirsch, M. W.; Pugh, C. C.; Shub, M., Invariant Manifolds, Lecture Notes in Mathematics, vol. 583 (1977), Springer: Springer Berlin-New York · Zbl 0355.58009
[30] Quandt, J., On the Hartman-Grobman theorem for maps, J. Differ. Equ., 64, 154-164 (1986) · Zbl 0597.58022
[31] Zhang, W., Generalized exponential dichotomies and invariant manifolds for differential equations, Adv. Math., 22, 1-45 (1993) · Zbl 0791.34039
[32] Bronstein, I. U.; Kopanskii, A. Y., Smooth Invariant Manifolds and Normal Forms (1994), World Scientific · Zbl 0974.34001
[33] Tan, B., σ-Hölder continuous linearization near hyperbolic fixed points in \(R^n\), J. Differ. Equ., 162, 251-269 (2000) · Zbl 0978.37012
[34] Nipp, K.; Stoffer, D., Invariant Manifolds in Discrete and Continuous Dynamical Systems (2013), European Mathematical Society · Zbl 1291.37004
[35] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1082.37002
[36] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 31, 53-98 (1979) · Zbl 0476.34034
[37] Palis, J.; Takens, F., Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0790.58014
[38] Chow, S.-N.; Lin, X.-B.; Lu, K., Smooth invariant foliations in infinite dimensional spaces, J. Differ. Equ., 94, 266-291 (1991) · Zbl 0749.58043
[39] Bates, P. W.; Lu, K.; Zeng, C., Invariant foliations near normally hyperbolic invariant manifolds for semiflows, Trans. Am. Math. Soc., 352, 4641-4676 (2000) · Zbl 0964.37018
[40] Zhang, W.; Zhang, W., α-Hölder linearization of hyperbolic diffeomorphisms with resonance, Ergod. Theory Dyn. Syst., 36, 310-334 (2016) · Zbl 1354.37030
[41] Zhang, W.; Zhang, W., On invariant manifolds and invariant foliations without a spectral gap, Adv. Math., 303, 549-610 (2016) · Zbl 1366.37069
[42] Tineo, A., May Leonard systems, Nonlinear Anal., Real World Appl., 9, 1612-1618 (2008) · Zbl 1154.34357
[43] Hirsch, M. W., Differential Topology, Grad. Texts in Math., vol. 38 (1994), Springer: Springer New York, corrected reprint of the 1976 original
[44] Granas, A.; Dugundji, J., Fixed Point Theory (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1025.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.