×

A symplectic integrator for the symmetry reduced and regularised planar 3-body problem with vanishing angular momentum. (English) Zbl 1293.37031

Summary: We construct an explicit reversible symplectic integrator for the planar 3-body problem with zero angular momentum. We start with a Hamiltonian of the planar 3-body problem that is globally regularised and fully symmetry reduced. This Hamiltonian is a sum of 10 polynomials each of which can be integrated exactly, and hence a symplectic integrator is constructed. The performance of the integrator is examined with three numerical examples: The figure eight, the Pythagorean orbit, and a periodic collision orbit.

MSC:

37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
70F07 Three-body problems
37N05 Dynamical systems in classical and celestial mechanics
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)

References:

[1] Blanes, S.: Symplectic maps for approximating polynomial Hamiltonian systems. Phys. Rev. E. Stat. Nonlinear Soft. Matter Phys. 65(5 Pt 2), 056,703 (2002)
[2] Blanes, S., Budd, C.J.: Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J. Sci. Comput. 26, 1089-1113 (2005) · Zbl 1076.65115 · doi:10.1137/S1064827502416630
[3] Blanes, S., Iserles, A.: Explicit adaptive symplectic integrators for solving hamiltonian systems. Celest. Mech. Dyn. Astron. 114, 297-317 (2012) · Zbl 1266.37045 · doi:10.1007/s10569-012-9441-z
[4] Channell, P. J., Neri, F. R.: An Introduction to Symplectic Integrators, vol. 10. Fields Institute, Communications, pp. 45-58. American Mathematical Society (1996) · Zbl 0871.65057
[5] Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three body problem in the case of equal masses. Ann. Math. 152, 881-901 (2000) · Zbl 0987.70009 · doi:10.2307/2661357
[6] Gjaja, I.: Monomial factorization of symplectic maps. Part. Accel. 43(3), 133-144 (1994)
[7] Gruntz, D.; Waldvogel, J.; Gander, W. (ed.); Hřebíček, J. (ed.), Orbits in the planar three-body problem, 51-72 (2004), Berlin · doi:10.1007/978-3-642-18873-2_4
[8] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002) · Zbl 0994.65135 · doi:10.1007/978-3-662-05018-7
[9] Heggie, D.: A global regularisation of the gravitationaln-body problem. Celest. Mech. 10(2), 217-241 (1974) · Zbl 0312.70015
[10] Ito, T., Tanikawa, K.: Trends in 20th century celestial mechanics. Publ. Natl. Astron. Obs. Jpn. 9, 55-112 (2007)
[11] Kustaanheimo, P., Stiefel, E.: Perturbation theory of kepler motion based on spinor regularization. J. Math. Bd. 218, 27 (1965) · Zbl 0151.34901
[12] Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004) · Zbl 1069.65139
[13] Lemaître C (1964) The three body problem. Technical report, NASA CR-110. http://ntrs.nasa.gov/ · Zbl 0068.40902
[14] McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341-434 (2002) · Zbl 1105.65341 · doi:10.1017/S0962492902000053
[15] Mikkola, S.: Practical symplectic methods with time transformation for the few-body problem. Celest. Mech. Dyn. Astron. 67, 145-165 (1997) · Zbl 0898.70003 · doi:10.1023/A:1008217427749
[16] Moeckel, R., Montgomery, R.: Symmetric regularization, reduction and blow-up of the planar three-body problem (2012, preprint). arXiv:12020972 · Zbl 1275.37037
[17] Moore, C.: Braids in classical dynamics. Phys. Rev. Lett. 70, 3675-3679 (1993) · Zbl 1050.37522 · doi:10.1103/PhysRevLett.70.3675
[18] Preto, M., Tremaine, S.: A class of symplectic integrators with adaptive time step for separable hamiltonian systems. Astron. J. 118, 2532-2541 (1999) · doi:10.1086/301102
[19] Quispel, G.R.W., Mclachlan, R.: Explicit geometric integration of polynomial vector fields. BIT Numer. Math. 44, 515-538 (2004) · Zbl 1066.65150 · doi:10.1023/B:BITN.0000046814.29690.62
[20] Shi, J., Yan, Y.T.: Explicitly integrable polynomial hamiltonians and evaluation of lie transformations. Phys. Rev. E 48(5), 3943 (1993) · doi:10.1103/PhysRevE.48.3943
[21] Simó, C.: Periodic orbits of the planar N-body problem with equal masses and all bodies on the same path. In: Steves, B.A., Maciejewski, A.J. (eds.) pp. 265-284. The Restless Universe (2001) · Zbl 1076.65115
[22] Simó, C.: Dynamical properties of the figure eight solution of the three-body problem. In: Chenciner, A., Cushman, R., Robinson, C., Xia, Z.J. (eds.) Celestial Mechanics, Dedicated to Donald Saari for his 60th Birthday, Vol. 1, pp. 209-228 (2002) · Zbl 1151.70316
[23] Szebehely, V., Peters, C.F.: Complete solution of a general problem of three bodies. Astron. J. 72, 876-883 (1967). doi:10.1086/110355 · Zbl 0156.12102 · doi:10.1086/110355
[24] Waldvogel, J.: A new regularization of the planar problem of three bodies. Celest. Mech. 6, 221-231 (1972). doi:10.1007/BF01227784 · Zbl 0242.70012 · doi:10.1007/BF01227784
[25] Waldvogel, J.: Symmetric and regularized coordinates on the plane triple collision manifold. Celest. Mech. 28, 69-82 (1982) · Zbl 0551.70007 · doi:10.1007/BF01230661
[26] Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262-268 (1990) · doi:10.1016/0375-9601(90)90092-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.