×

Investigating singularities in hex meshing. (English) Zbl 1507.65270

Sevilla, Rubén (ed.) et al., Mesh generation and adaptation. Cutting-edge techniques. Cham: Springer. SEMA SIMAI Springer Ser. 30, 41-67 (2022).
Summary: Hexahedral meshing of complex domains is a long-standing problem in engineering simulation. One strategy to achieve it is through multi-block decomposition. Recent efforts have focussed on deriving the block topology using frame-fields which aim to capture the desired mesh orientation throughout the domain. This reduces to determining the approximate position, orientation and connectivity of lines of mesh edges where the number of elements is different from what it would be in a regular mesh. These are known as mesh singularity lines and they form the framework of a block decomposition. However, frame fields often produce singularity lines which are connected in invalid configurations and cannot support a valid block topology. The contribution in this paper is to demonstrate how information encapsulated in the Medial Axis of a \(3D\) domain can provide rational solutions to a number of meshing problems that have been identified in the literature as having no satisfactory automated solution. The approach is not yet a formal algorithm but provides extra insights that should assist in the development of one.
For the entire collection see [Zbl 1487.65003].

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs

Software:

CubeCover
Full Text: DOI

References:

[1] Lim, C.W., Yin, X., Zhang, T., Su, Y., Goh, C.K., Moreno, A., Shahpar, S.: Automatic blocking of shapes using evolutionary algorithm. In: Proceedings of the 27th international meshing roundtable (2019). doi:10.1007/978-3-030-13992-6_10 · Zbl 1447.76024
[2] Huang, J.; Tong, Y.; Wei, H.; Bao, H., Boundary aligned smooth 3D cross-frame field, ACM Trans. Graph., 30, 6, 1-8 (2011)
[3] Huang, J., Jiang, T., Wang, Y., Tong, Y., Bao, H.: Automatic frame field guided hexahedral mesh generation (2012). http://www.cad.zju.edu.cn/home/hj/12/hex/techreport/hex-techreport.pdf. Cited 25 Nov 2020
[4] Li, Y.; Liu, Y.; Xu, W.; Wang, W.; Guo, B., All-hex meshing using singularity-restricted field, ACM Trans. Graph., 31, 6, 1-11 (2012)
[5] Ray, N.; Sokolov, D.; Lévy, B., Practical 3D frame field generation, ACM Trans. Graph., 35, 6, 1-19 (2016) · doi:10.1145/2980179.2982408
[6] Solomon, J.; Vaxman, A.; Bommes, D., Boundary element octahedral fields in volumes, ACM Trans. Graph., 36, 4, 1 (2017) · doi:10.1145/3072959.3065254
[7] Palmer, D.; Bommes, D.; Solomon, J., Algebraic representations for volumetric frame fields, ACM Trans. Graph., 39, 2, 1-17 (2020) · doi:10.1145/3366786
[8] Kowalski, N.; Ledoux, F.; Frey, P., Smoothness driven frame field generation for hexahedral meshing, CAD Comput. Aided Des., 72, 65-77 (2016) · doi:10.1016/j.cad.2015.06.009
[9] Nieser, M.; Reitebuch, U.; Polthier, K., CUBECOVER—Parameterization of 3D volumes, Comput. Graphics Forum, 30, 5, 1397-1406 (2014) · doi:10.1111/j.1467-8659.2011.02014.x
[10] Zheng, Z.; Wang, R.; Gao, S.; Liao, Y.; Ding, M., Automatic block decomposition based on dual surfaces, CAD Comput. Aided Des., 127, 102883 (2020) · doi:10.1016/j.cad.2020.102883
[11] Calderan, S., Hutzler, G., Ledoux, F.: Dual-based user-guided hexahedral block generation using frame fields. In: 28th International Meshing Roundtable (2020). doi:10.5281/ZENODO.3653430
[12] Papadimitrakis, D., Armstrong, C.G., Trevor, T.R., Le Moigne, A., Shahpar, S.: (2018) A Combined Medial Object and Frame Approach to Compute Mesh Singularity Lines. 27th International Meshing Roundtable. https://project.inria.fr/imr27/files/2018/09/2000.pdf
[13] Papadimitrakis, D., Armstrong, C.G., Trevor, T.R., Le Moigne, A., Shahpar, S.: Building direction fields on the medial object to generate 3D domain decompositions for hexahedral meshing. In: 28th International Meshing Roundtable (2020). doi:10.5281/ZENODO.3653428
[14] Bernard, P.E., Remacle, J.F., Kowalski, N., Geuzaine, C.: Hex-dominant meshing approach based on frame field smoothness. In: 23rd International Meshing Roundtable (2014). doi:10.1016/j.proeng.2014.10.382
[15] Baudouin, TC; Remacle, JF; Marchandise, E.; Henrotte, F.; Geuzaine, C., A frontal approach to hex-dominant mesh generation, Adv. Model. Simul. Eng. Sci., 1, 1, 1-30 (2014) · doi:10.1186/2213-7467-1-8
[16] Sokolov, D.; Ray, N.; Untereiner, L.; Levy, B., Hexahedral-Dominant Meshing. ACM Trans. Graph., 35, 5, 1-23 (2016) · doi:10.1145/2930662
[17] Gao, X.; Jakob, W.; Tarini, M.; Panozzo, D., Robust hex-dominant mesh generation using field-guided polyhedral agglomeration, ACM Trans. Graph., 36, 4, 1-13 (2017) · doi:10.1145/3072959.3073676
[18] Liu, Z.; Zhang, P.; Chien, E.; Solomon, J.; Bommes, D., Singularity-constrained octahedral fields for hexahedral meshing, ACM Trans. Graph., 37, 4, 93-101 (2018)
[19] Corman, E.; Crane, K., Symmetric Moving Frames, ACM Trans. Graph., 38, 4, 1-16 (2019) · doi:10.1145/3306346.3323029
[20] Reberol, M., Chemin, A., Remacle, J.F.: Multiple approaches to frame field correction for CAD models. In: 28th International Meshing Roundtable (2020). doi:10.5281/ZENODO.3653414
[21] Price, MA; Armstrong, CG; Sabin, MA, Hexahedral mesh generation by medial surface subdivision: Part I, Solids with convex edges. Int. J. Numer. Methods Eng., 38, 19, 3335-3359 (1995) · Zbl 0835.73080 · doi:10.1002/nme.1620381910
[22] Sherbrooke, EC; Patrikalakis, NM; Wolter, FE, Differential and topological properties of medial axis transforms, Graph. Models Image Process., 58, 6, 574-592 (1996) · doi:10.1006/gmip.1996.0047
[23] Fogg, HJ; Sun, L.; Makem, JE; Armstrong, CG; Robinson, TT, Singularities in structured meshes and cross-fields, CAD Comput. Aided Des., 105, 11-25 (2018) · doi:10.1016/j.cad.2018.06.002
[24] Viertel, R., Staten, M.L., Ledoux, F.: Analysis of non-meshable automatically generated frame fields. 25th International Meshing Roundtable (2016). https://www.osti.gov/servlets/purl/1375569
[25] Price, MA; Armstrong, CG, Hexahedral mesh generation by medial surface subdivision: Part II, Solids with flat and concave edges. Int. J. Numer. Methods Eng., 40, 1, 111-136 (1997) · doi:10.1002/(SICI)1097-0207(19970115)40:1<111::AID-NME56>3.0.CO;2-K
[26] Li, TS; McKeag, RM; Armstrong, CG, Hexahedral meshing using midpoint subdivision and integer programming, Comput. Methods Appl. Mech. Eng., 124, 1-2, 171-193 (1995) · doi:10.1016/0045-7825(94)00758-F
[27] Armstrong, C.G., Li, T.S., Tierney, C., Robinson, T.T.: Multiblock mesh refinement by adding mesh singularities. In: 27th International Meshing Roundtable, Lecture Notes in Computational Science and Engineering, vol. 127 (2019). doi:10.1007/978-3-030-13992-6 · Zbl 1454.65179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.