×

Optimal unambiguous discrimination of two finite-dimensional coherent states. (English) Zbl 1170.81337

Summary: An exact analytical solution to the optimal unambiguous state discrimination involving two finite-dimensional coherent states that occur with given prior probabilities is presented using the Lewenstein-Sanpera decomposition method. Furthermore, a numerical method is advised for efficient solving of the unambiguous state discrimination of the two finite-dimensional coherent states with the same dimensions. In this manner, it is shown that the maximum success rate for the unambiguous states discrimination of the two finite-dimensional coherent states with the arbitrary prior probability is decreased by increasing the dimensionality of the finite-dimensional coherent states. Also, the success rate for the unambiguous states discrimination of the two coherent states satisfies the upper bound proportional to the fidelity of the states for a given prior probability.

MSC:

81P68 Quantum computation
81R30 Coherent states
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] DOI: 10.1080/00107510010002599 · doi:10.1080/00107510010002599
[2] DOI: 10.1007/978-3-540-44481-7_11 · doi:10.1007/978-3-540-44481-7_11
[3] DOI: 10.1007/978-3-540-44481-7_12 · doi:10.1007/978-3-540-44481-7_12
[4] DOI: 10.1103/PhysRevA.77.042314 · doi:10.1103/PhysRevA.77.042314
[5] DOI: 10.1016/0375-9601(87)90222-2 · doi:10.1016/0375-9601(87)90222-2
[6] DOI: 10.1016/0375-9601(88)90840-7 · doi:10.1016/0375-9601(88)90840-7
[7] DOI: 10.1016/0375-9601(88)91034-1 · doi:10.1016/0375-9601(88)91034-1
[8] DOI: 10.1103/PhysRevLett.80.4999 · doi:10.1103/PhysRevLett.80.4999
[9] DOI: 10.1103/PhysRevA.64.022311 · doi:10.1103/PhysRevA.64.022311
[10] DOI: 10.1016/0375-9601(94)00919-G · Zbl 1020.81514 · doi:10.1016/0375-9601(94)00919-G
[11] DOI: 10.1103/PhysRevLett.90.257901 · doi:10.1103/PhysRevLett.90.257901
[12] DOI: 10.1016/S0375-9601(02)01602-X · Zbl 1006.81004 · doi:10.1016/S0375-9601(02)01602-X
[13] DOI: 10.1103/PhysRevA.68.010301 · doi:10.1103/PhysRevA.68.010301
[14] DOI: 10.1103/PhysRevA.68.022308 · doi:10.1103/PhysRevA.68.022308
[15] DOI: 10.1103/PhysRevA.76.052322 · doi:10.1103/PhysRevA.76.052322
[16] DOI: 10.1103/PhysRevA.69.062318 · doi:10.1103/PhysRevA.69.062318
[17] Helstrom C. W., Quantum Detection and Estimation Theory (1976) · Zbl 1332.81011
[18] Nielsen M. A., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
[19] DOI: 10.1103/PhysRevA.71.050301 · Zbl 1227.81036 · doi:10.1103/PhysRevA.71.050301
[20] DOI: 10.1103/PhysRevLett.80.2261 · doi:10.1103/PhysRevLett.80.2261
[21] DOI: 10.1088/0305-4470/34/35/318 · Zbl 1021.81006 · doi:10.1088/0305-4470/34/35/318
[22] DOI: 10.1016/j.physa.2004.10.028 · doi:10.1016/j.physa.2004.10.028
[23] DOI: 10.1007/s11128-005-5657-0 · Zbl 1130.81012 · doi:10.1007/s11128-005-5657-0
[24] DOI: 10.1016/0375-9601(93)90878-4 · doi:10.1016/0375-9601(93)90878-4
[25] DOI: 10.1080/09500349414551261 · doi:10.1080/09500349414551261
[26] DOI: 10.1080/09500349608232754 · Zbl 0941.81554 · doi:10.1080/09500349608232754
[27] DOI: 10.1103/PhysRev.130.2529 · doi:10.1103/PhysRev.130.2529
[28] DOI: 10.1103/PhysRev.131.2766 · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766
[29] DOI: 10.1103/PhysRevA.45.8079 · doi:10.1103/PhysRevA.45.8079
[30] DOI: 10.1103/PhysRevA.50.3423 · doi:10.1103/PhysRevA.50.3423
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.