×

Some results on Whitney numbers of Dowling lattices. (English) Zbl 1377.11032

Summary: In this paper, we study some properties of Whitney numbers of Dowling lattices and related polynomials. We answer the following question: there is a relation between Stirling and Eulerian polynomials. Can we find a new relation between Dowling polynomials and other polynomials generalizing Eulerian polynomials? In addition, some congruences for the Dowling numbers are given.

MSC:

11B73 Bell and Stirling numbers
05B35 Combinatorial aspects of matroids and geometric lattices
05A15 Exact enumeration problems, generating functions

References:

[1] Belbachir, H.; Mihoubi, M., A generalized recurrence for Bell polynomials: an alternate approach to Spivey and Gould-Quaintance formulas, European J. Combin., 30, 1254-1256 (2009) · Zbl 1187.05007
[2] Benoumhani, M., On Whitney numbers of Dowling lattices, Discrete Math., 159, 13-33 (1996) · Zbl 0861.05004
[3] Benoumhani, M., On some numbers related to Whitney numbers of Dowling lattices, Adv. Appl. Math., 19, 106-116 (1997) · Zbl 0876.05001
[4] Benoumhani, M., Log-concavity of Whitney numbers of Dowling lattices, Adv. Appl. Math., 22, 186-189 (1999) · Zbl 0918.05003
[5] Boyadzhiev, K. N., The Euler series transformation and the binomial identities of Ljunggren, Munarini and Simons, Integers, 10, 265-271 (2010) · Zbl 1226.05015
[6] Broder, A. Z., The \(r\)-Stirling numbers, Discrete Math., 49, 3, 241-259 (1984) · Zbl 0535.05006
[7] Chen, K. W., Identities from the binomial transform, J. Number Theory, 124, 142-150 (2007) · Zbl 1120.05007
[8] Cheon, G.-S.; Jung, J.-H., The \(r\)-Whitney numbers of Dowling lattices, Discrete Math., 312, 15, 2337-2348 (2012) · Zbl 1246.05009
[9] Comtet, L., Advanced Combinatorics (1974), D. Reidel Publishing Co. · Zbl 0283.05001
[10] Dowling, T. A., A class of gemometric lattices bases on finite groups, J. Combin. Theory Ser. B, 14, 61-86 (1973), Erratum J. Combin. Theory Ser. B 15 (1973) 211 · Zbl 0247.05019
[11] Frobenius, G., Über die Bernoullischen und die Eulerschen Polynome, Sitzungsberichte der Preussische Akademie der Wissenschaften, 809-847 (1910) · Zbl 1264.11013
[12] Gessel, I., Congruences for Bell and Tangent numbers, Fibonacci Quart., 19, 2, 137-144 (1981) · Zbl 0451.10008
[13] Layman, J. W., The Hankel transform and some of its properties, J. Integer Seq., 4 (2001), Article 01.1.5 · Zbl 0978.15022
[14] Mansour, T.; Shattuck, M., A recurrence related to the Bell numbers, Integers, 11, A67 (2011) · Zbl 1264.11014
[15] Mező, I., A new formula for the Bernoulli polynomials, Results Math., 58, 329-335 (2010) · Zbl 1237.11010
[16] Mező, I., The r-Bell numbers, J. Integer Seq., 14 (2011), Article 11.1.1 · Zbl 1205.05017
[17] Radoux, C., Calcul effectif de certains déterminants de Hankel, Bull. Soc. Math. Belg. Sér. B, 31, 1, 49-55 (1979) · Zbl 0439.10006
[18] Rahmani, M., The Akiyama-Tanigawa matrix and related combinatorial identities, Linear Algebra Appl., 438, 219-230 (2013) · Zbl 1257.05010
[19] Riordan, J., An Introduction to Combinatorial Analysis (2002), Dover Publications Inc.
[20] Suter, R., Two analogues of a classical sequence, J. Integer Seq., 3 (2000), Article 00.1.8 · Zbl 1004.05002
[21] Tanny, S. M., On some numbers related to the Bell numbers, Can. Math. Bull., 17, 733-738 (1975) · Zbl 0304.10007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.