×

Some remarks on the generalized Apostol-Bernoulli and Apostol-Euler polynomials. (English) Zbl 1455.11038

Summary: In this paper, we give explicit expressions for generalized Apostol-Bernoulli and Apostol-Euler polynomials. As consequences, we deduce some explicit representations for other Apostol-type polynomials. Moreover, we find an algorithm based on a three-term recurrence for the calculation of generalized Apostol-Euler numbers and polynomials. As an application, we derive a formula for the values of some kinds of Hurwitz-Lerch Zeta functions at negative arguments.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Ali Özarslan, M., Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62, 2452-2462 (2011) · Zbl 1231.33013 · doi:10.1016/j.camwa.2011.07.031
[2] M. A. Boutiche, M. Rahmani, and H. M. Srivastava, Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials, Mediterr. J. Math., 14(2) (2017), Art. 89, 10 pp. · Zbl 1402.11034
[3] Broder, A. Z., The r-Stirling numbers, Discrete Math., 49, 241-259 (1984) · Zbl 0535.05006 · doi:10.1016/0012-365X(84)90161-4
[4] Carlitz, L., Weighted Stirling numbers of the first and second kind I, Fibonacci Quart., 18, 147-162 (1980) · Zbl 0428.05003
[5] Carlitz, L., Weighted Stirling numbers of the first and second kind II, Fibonacci Quart., 18, 242-257 (1980) · Zbl 0441.05003
[6] Cheon, G. S.; Jung, J. H., r-Whitney numbers of Dowling lattices, Discrete Math., 312, 2337-2348 (2012) · Zbl 1246.05009 · doi:10.1016/j.disc.2012.04.001
[7] Choi, J.; Jang, D. S.; Srivastava, H. M., A generalization of the Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct., 19, 65-79 (2008) · Zbl 1145.11068
[8] Dere, R.; Simsek, Y.; Srivastava, H. M., A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, 133, 3245-3263 (2013) · Zbl 1295.11023 · doi:10.1016/j.jnt.2013.03.004
[9] He, Y.; Araci, S.; Srivastava, H. M., Some new formulas for the products of the Apostol type polynomials, 287 (2016) · Zbl 1419.11040
[10] He, Y.; Araci, S.; Srivastava, H. M.; Acikgoz, M., Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Appl. Math. Comput., 262, 31-41 (2015) · Zbl 1410.11016
[11] Lin, S. D.; Srivastava, H. M., Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput., 154, 725-733 (2004) · Zbl 1060.49016 · doi:10.1016/j.camwa.2004.03.003
[12] Lu, D. Q.; Srivastava, H. M., Some series identities involving the generalized Apostol type and related polynomials, Comput. Math. Appl., 62, 3591-3602 (2011) · Zbl 1236.33020 · doi:10.1016/j.camwa.2011.09.010
[13] Luo, Q. M.; Srivastava, H. M., Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308, 290-302 (2005) · Zbl 1076.33006 · doi:10.1016/j.jmaa.2005.01.020
[14] Luo, Q. M.; Srivastava, H. M., Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 51, 631-642 (2006) · Zbl 1099.33011 · doi:10.1016/j.camwa.2005.04.018
[15] Luo, Q. M.; Srivastava, H. M., Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput., 217, 5702-5728 (2011) · Zbl 1218.11026
[16] Mezö, I., A new formula for the Bernoulli polynomials, Results Math., 58, 329-335 (2010) · Zbl 1237.11010 · doi:10.1007/s00025-010-0039-z
[17] Mezö, I.; Ramírez, J. L., Some identities of the r-Whitney numbers, Aequationes Math., 90, 393-406 (2016) · Zbl 1415.11048 · doi:10.1007/s00010-015-0404-9
[18] Özden, H.; Simsek, Y.; Srivastava, H. M., A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 60, 2779-2787 (2010) · Zbl 1207.33015 · doi:10.1016/j.camwa.2010.09.031
[19] Rahmani, M., Generalized Stirling transform, Miskolc Math. Notes, 15, 677-690 (2014) · Zbl 1324.11024 · doi:10.18514/MMN.2014.1084
[20] Rahmani, M., Some results on Whitney numbers of Dowling lattices, Arab J. Math. Sci., 20, 11-27 (2014) · Zbl 1377.11032
[21] Srivastava, H. M., A new family of the λ-generalized Hurwitz-Lerch zeta functions with applications, Appl. Math. Inf. Sci., 8, 1485-1500 (2014) · doi:10.12785/amis/080402
[22] H. M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier, Inc., Amsterdam (2012). · Zbl 1239.33002
[23] Srivastava, H. M.; Kucukoğlu, I.; Simsek, Y., Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials, J. Number Theory, 181, 117-146 (2017) · Zbl 1369.05009 · doi:10.1016/j.jnt.2017.05.008
[24] Srivastava, H. M.; Kurt, B.; Simsek, Y., Some families of Genocchi type polynomials and their interpolation functions, Integral Transforms Spec. Funct., 23, 919-938 (2012) · Zbl 1253.05021 · doi:10.1080/10652469.2011.643627
[25] Srivastava, H. M.; Kurt, B.; Simsek, Y., Some families of Genocchi type polynomials and their interpolation functions, Integral Transforms Spec. Funct., 23, 939-940 (2012) · Zbl 1253.05021 · doi:10.1080/10652469.2012.690950
[26] Srivastava, H. M.; Saxena, R. K.; Pogány, T. K.; Saxena, R., Integral and computational representations of the extended Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct., 22, 487-506 (2011) · Zbl 1242.11065 · doi:10.1080/10652469.2010.530128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.