×

Intense THz laser effects on off-axis donor impurities in GaAs-AlGaAs coaxial quantum well wires. (English) Zbl 1248.82099

Summary: The binding energy of an off-axis shallow-donor impurity in a GaAs coaxial cylindrical quantum well-wire under the action of an intense, high-frequency laser field is calculated using a variational procedure within the effective-mass approximation. We take into account the laser dressing effects on both the impurity Coulomb potential and the confinement potential. Numerical calculations of the ground state subband energy levels based on a finite element method are performed for different barrier thicknesses and laser field parameters. Our model indicates a possible tuning of the well potential shape along the laser polarization direction. Strong distortions of the electron probability density under intense laser field conditions are also predicted. The study proves that the presence of the laser field partially breaks down the degeneracy of the states for donors symmetrically positioned within the structure. The results obtained show that the impurity energy levels in coaxial quantum wires can be significantly modified and controlled by intense laser fields.

MSC:

82D77 Quantum waveguides, quantum wires
82D37 Statistical mechanics of semiconductors
78A57 Electrochemistry
78A60 Lasers, masers, optical bistability, nonlinear optics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
49S05 Variational principles of physics
Full Text: DOI

References:

[1] Oliveira, L. E.; Duque, C. A.; Porras-Montenegro, N.; de Dios-Leyva, M., Physica B, 302-303, 72 (2001)
[2] Niculescu, E.; Gearba, A.; Cone, G.; Negutu, C., Superlatt. Microstruct., 29, 319 (2001)
[3] Branis, S. V.; Li, G.; Bajaj, K. K., Phys. Rev. B, 47, 1316 (1993)
[4] Montes, A.; Duque, C. A.; Porras-Montenegro, N., J. Appl. Phys., 81, 7890 (1997)
[5] Zhou, H.; Deng, Z. Y., J. Phys. Condens. Matt., 9, 1241 (1997)
[6] Montes, A.; Duque, C. A.; Porras-Montenegro, N., J. Appl. Phys., 84, 1421 (1998)
[7] Montes, A.; Duque, C. A.; Porras-Montenegro, N., Phys. Status Solidi B, 210, 731 (1998)
[8] Erdogan, I.; Akankan, O.; Akbas, H., Physica E, 33, 83 (2006)
[9] Aktas, S.; Okan, S. E.; Akbas, H., Superlatt. Microstruct., 30, 129 (2001)
[10] Boz, F. K.; Aktas, S., Superlatt. Microstruct., 37, 281 (2005)
[11] Aktas, S.; Boz, F. K.; Dalgic, S. S., Physica E, 28, 96 (2005)
[12] Kasapoglu, E.; Sari, H.; Yesilgul, U.; Sokmen, I., Surf. Rev. Lett., 11, 411 (2004)
[13] Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A., Superlatt. Microstruct., 44, 86 (2008)
[14] Asmar, N. G.; Markelz, A. G.; Gwinn, E. G.; Cerne, J.; Sherwin, M. S.; Campman, K. L.; Hopkins, P. F.; Gossard, A. C., Phys. Rev. B, 51, 18041 (1995)
[15] Inarrea, J.; Platero, G., Europhys. Lett., 33, 477 (1996)
[16] Zhang, A.; Lew Yan Voon, L. C.; Willatzen, M., Phys. Rev. B, 73, 045316 (2006)
[17] Li, J.; Hao, X.; Liu, J.; Yang, X., Phys. Lett. A, 372, 716 (2008) · Zbl 1217.82106
[18] Fanyao, Q.; Morais, P. C., Phys. Lett. A, 310, 460 (2003)
[19] Fanyao, Q.; Fonseca, A. L.A.; Nunes, O. A.C., Phys. Rev. B, 54, 16405 (1996)
[20] Kasapoglu, E.; Sari, H.; Yesilgul, U.; Sökmen, I., J. Phys.: Condens. Matt., 18, 6263 (2006)
[21] Brandi, H. S.; Jalbert, G., Solid State Commun., 113, 207 (2000)
[22] Brandi, H. S.; Latge, A.; Oliveira, L. E., Phys. Rev. B, 64, 035323 (2001)
[23] Lima, F. M.S.; Nunes, O. A.C.; Fonseca, A. L.A.; Amato, M. A.; Da Silva, E. F., Solid State Commun., 149, 678 (2009)
[24] Santhi, M.; Peter, A. J., Eur. Phys. J. B, 71, 225 (2009)
[25] Peter, A. J.; Santhi, M., J. Optoelectron. Adv. Mater., 11, 565 (2009)
[26] Niculescu, E. C.; Radu, A. M., J. Optoelectron. Adv. Mater., 9, 3598 (2007)
[27] Ehlotzky, F., Phys. Lett. A, 126, 524 (1988)
[28] Gavrila, M.; Kaminski, J. Z., Phys. Rev. Lett., 52, 613 (1984)
[29] Pont, M.; Walet, N. R.; Gavrila, M.; McCurdy, C. W., Phys. Rev. Lett., 61, 939 (1988)
[30] Strang, G.; Fix, G., An Analysis of the Finite Element Method (1973), Prentice-Hall Englewood Cliffs: Prentice-Hall Englewood Cliffs NJ, USA · Zbl 0278.65116
[31] George, P. L., Automatic Mesh Generation - Application to Finite Element Methods (1991), Wiley · Zbl 0808.65122
[32] Saad, Y., Linear Algebra Appl., 34, 269 (1980) · Zbl 0456.65017
[33] Madarasz, F. L.; Szmulowicz, F.; Hopkins, F. K.; Dorsey, D. L., Phys. Rev. B, 49, 13528 (1994)
[34] Klepfer, R. O.; Madarasz, F. L.; Szmulowicz, F., Phys. Rev. B, 51, 4633 (1995)
[35] Lima, F. M.S.; Amato, M. A.; Nunes, O. A.C.; Fonseca, A. L.A.; Enders, B. G.; Da Silva, E. F., J. Appl. Phys., 105, 123111 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.