×

Slit-strip Ising boundary conformal field theory. I: Discrete and continuous function spaces. (English) Zbl 1508.30085

Summary: This is the first in a series of articles about recovering the full algebraic structure of a boundary conformal field theory (CFT) from the scaling limit of the critical Ising model in slit-strip geometry. Here, we introduce spaces of holomorphic functions in continuum domains as well as corresponding spaces of discrete holomorphic functions in lattice domains. We find distinguished sets of functions characterized by their singular behavior in the three infinite directions in the slit-strip domains, and note in particular that natural subsets of these functions span analogues of Hardy spaces. We prove convergence results of the distinguished discrete holomorphic functions to the continuum ones. In the subsequent articles, the discrete holomorphic functions will be used for the calculation of the Ising model fusion coefficients (as well as for the diagonalization of the Ising transfer matrix), and the convergence of the functions is used to prove the convergence of the fusion coefficients. It will also be shown that the vertex operator algebra of the boundary conformal field theory can be recovered from the limit of the fusion coefficients via geometric transformations involving the distinguished continuum functions.

MSC:

30G25 Discrete analytic functions
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
46N55 Applications of functional analysis in statistical physics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Abraham, DB; Martin-Löf, A., The transfer matrix for a pure phase in the two-dimensional Ising model, Commun. Math. Phys., 32, 245-268 (1973) · doi:10.1007/BF01645595
[2] Ameen, T., Kytölä, K., Park, S.C.: Slit-strip Ising boundary conformal field theory 2: Scaling limits of fusion coefficients. Preprint: https://arxiv.org/abs/2108.05105 (2021)
[3] Baxter, RJ, Exactly Solved Models in Statistical Mechanics (1982), Cambridge: Academic Press, Cambridge · Zbl 0538.60093
[4] Baxter, RJ; Enting, IG, 399th solution of the Ising model, J. Phys. A, 11, 2463 (1978) · doi:10.1088/0305-4470/11/12/012
[5] Beffara, V.; Peltola, E.; Wu, H., On the uniqueness of global multiple SLEs, Ann. Probab., 49, 1, 400-434 (2021) · Zbl 1478.60225 · doi:10.1214/20-AOP1477
[6] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 2, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[7] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys., 34, 5-6, 763-774 (1984) · doi:10.1007/BF01009438
[8] Benoist, S.; Hongler, C., The scaling limit of critical Ising interfaces is CLE(3), Ann. Probab., 47, 2049-2086 (2019) · Zbl 1467.60061 · doi:10.1214/18-AOP1301
[9] Benoist, S.; Duminil-Copin, H.; Hongler, C., Conformal invariance of crossing probabilities for the Ising model with free boundary conditions, Ann. Inst. H. Poincaré Probab. Stat., 52, 1784-1798 (2016) · Zbl 1355.60119 · doi:10.1214/15-AIHP698
[10] Camia, F.; Garban, C.; Newman, CM, Planar Ising magnetization field I. Uniqueness of the critical scaling limit, Ann. Probab., 43, 528-571 (2015) · Zbl 1332.82012 · doi:10.1214/13-AOP881
[11] Camia, F.; Garban, C.; Newman, CM, Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits, Ann. Inst. H. Poincaré, Probab. Stat., 52, 146-161 (2016) · Zbl 1338.82009 · doi:10.1214/14-AIHP643
[12] Chelkak, D., Planar Ising model at criticality: state-of-the-art and perspectives, Proc. Int. Congress Math., 3, 2789-2816 (2018) · Zbl 1453.82006
[13] Chelkak, D.; Cimasoni, D.; Kassel, A., Revisiting the combinatorics of the 2D Ising model, Ann. Inst. Henri Poincaré (D), 4, 3, 309-385 (2017) · Zbl 1380.82017 · doi:10.4171/AIHPD/42
[14] Chelkak, D.; Duminil-Copin, H.; Hongler, C.; Kemppainen, A.; Smirnov, S., Convergence of Ising interfaces to Schramm’s SLE curves, C. R. Acad. Sci. Paris Ser., I, 352, 157-161 (2014) · Zbl 1294.82007 · doi:10.1016/j.crma.2013.12.002
[15] Chelkak, D.; Hongler, C.; Izyurov, K., Conformal invariance of spin correlations in the planar Ising model, Ann. Math., 181, 3, 1087-1138 (2015) · Zbl 1318.82006 · doi:10.4007/annals.2015.181.3.5
[16] Chelkak, D., Hongler, C., Izyurov, K.: Correlations of primary fields in the critical Ising model. Preprint https://arxiv.org/abs/2103.10263 (2021) · Zbl 1318.82006
[17] Chelkak, D.; Izyurov, K., Holomorphic spinor observables in the critical Ising model, Commun. Math. Phys., 322, 303-332 (2013) · Zbl 1277.82010 · doi:10.1007/s00220-013-1763-5
[18] Chelkak, D.; Smirnov, S., Discrete complex analysis on isoradial graphs, Adv. Math., 228, 1590-1630 (2011) · Zbl 1227.31011 · doi:10.1016/j.aim.2011.06.025
[19] Chelkak, D.; Smirnov, S., Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent math., 189, 3, 515-580 (2012) · Zbl 1257.82020 · doi:10.1007/s00222-011-0371-2
[20] Deift, P.; Its, A.; Krasovsky, I., Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model. Some history and some recent results, Commun. Pure Appl. Math., 66, 1360-1438 (2013) · Zbl 1292.47016 · doi:10.1002/cpa.21467
[21] Di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory (1997), New York: Springer, New York · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[22] Dubédat, J.: Exact bosonizboson of the Ising model. https://arxiv.org/abs/1112.4399 (2011)
[23] Fisher, ME, On the dimer solution of planar Ising models, J. Math. Phys., 7, 1776-1781 (1966) · doi:10.1063/1.1704825
[24] Fisher, ME; Hartwig, RE, Toeplitz determinants: some applications, theorems, and conjectures, Adv. Chem. Phys, 15, 333-353 (1969)
[25] Frenkel, IB; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster (1988), Cambridge: Academic Press, Cambridge · Zbl 0674.17001
[26] Gheissari, R.; Hongler, C.; Park, SC, Ising model: local spin correlations and conformal invariance, Commun. Math. Phys., 367, 3, 771-833 (2019) · Zbl 1419.82012 · doi:10.1007/s00220-019-03312-y
[27] Hongler, C.: Conformal invariance of Ising model correlations, Ph.D. thesis, Université de Genève (2010). https://archive-ouverte.unige.ch/unige:18163 · Zbl 1304.82013
[28] Hongler, C.; Kytölä, K., Ising interfaces and free boundary conditions, J. Am. Math. Soc., 26, 1107-1189 (2013) · Zbl 1284.82021 · doi:10.1090/S0894-0347-2013-00774-2
[29] Hongler, C.; Kytölä, K.; Viklund, F., Conformal field theory at the lattice level: discrete complex analysis and Virasoro structure, Commun. Math. Phys., 395, 1-58 (2022) · Zbl 1504.82009 · doi:10.1007/s00220-022-04475-x
[30] Hongler, C.; Kytölä, K.; Zahabi, A., Discrete Holomorphicity and Ising model operator formalism, Anal. Complex Geom. Math. Phys., 644, 79-115 (2012) · Zbl 1338.82012 · doi:10.1090/conm/644/12795
[31] Hongler, C.; Smirnov, S., The energy density in the planar Ising model, Acta Math., 211, 191-225 (2013) · Zbl 1287.82007 · doi:10.1007/s11511-013-0102-1
[32] Hongler, C.; Phong, DH, Hardy spaces and boundary conditions from the Ising model, Math. Z., 274, 1-2, 209-224 (2013) · Zbl 1282.30028 · doi:10.1007/s00209-012-1065-1
[33] Huang, Y-Z, Two-Dimensional Conformal Geometry and Vertex Operator Algebras (2012), New York: Springer, New York
[34] Izyurov, K.: Holomorphic spinor observables and interfaces in the critical Ising model. PhD thesis, Université de Genève (2011)
[35] Izyurov, K., Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities, Commun. Math. Phys., 337, 225-252 (2015) · Zbl 1318.82010 · doi:10.1007/s00220-015-2339-3
[36] Izyurov, K., Critical Ising interfaces in multiply-connected domains, Probab. Th. Rel. Fields, 167, 379-415 (2017) · Zbl 1364.82012 · doi:10.1007/s00440-015-0685-x
[37] Jimbo, M.; Miwa, T., Studies on holonomic quantum fields. XVII, Proc. Jpn. Acad. Ser A, 56, 405-410 (1980) · doi:10.3792/pjaa.56.405
[38] Jimbo, M.; Miwa, T., Studies on holonomic quantum Fields. XVII, Proc. Jpn. Acad. Ser A, 57, 347 (1981)
[39] Kac, V., Vertex algebras for beginners, Am. Math. Soc., 10, viii+141 (1997)
[40] Kac, M.; Ward, JC, A combinatorial solution of the two-dimensional Ising model, Phys. Rev., 88, 1332 (1952) · Zbl 0048.45804 · doi:10.1103/PhysRev.88.1332
[41] Kadanoff, L.; Ceva, H., Determination of an operator algebra for the two-dimensional Ising model, Phys. Rev. B, 3, 3918-3939 (1971) · doi:10.1103/PhysRevB.3.3918
[42] Karrila, A.: Multiple SLE type scaling limits: from local to global. https://arxiv.org/pdf/1903.10354, (2019)
[43] Kasteleyn, PW, Dimer statistics and phase transitions, J. Math. Phys., 4, 287-293 (1963) · doi:10.1063/1.1703953
[44] Kaufman, B., Crystal statistics II. Partition function evaluated by spinor analysis, Phys. Rev. II. Ser., 76, 1232-1243 (1949) · Zbl 0035.42801
[45] Kemppainen, A.; Smirnov, S., Conformal invariance of boundary touching loops of FK Ising model, Commun. Math. Phys., 369, 49-98 (2019) · Zbl 1422.60140 · doi:10.1007/s00220-019-03437-0
[46] Kemppainen, A., Smirnov, S.: Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. https://arxiv.org/pdf/1609.08527, (2016)
[47] Kemppainen, A.; Smirnov, S., Configurations of FK Ising interfaces and hypergeometric SLE, Math. Res. Lett., 25, 3, 875-889 (2018) · Zbl 1418.82002 · doi:10.4310/MRL.2018.v25.n3.a7
[48] Koshida, S., Kytölä, K., Park, S.C., Radnell, D.: Slit-strip Ising boundary conformal field theory 3: The vertex operator algebra in the scaling limit. In preparation (2022)
[49] Kramers, HA; Wannier, GH, Statistics of the two-dimensional ferromagnet, Phys. Rev., 60, 252-262 (1941) · Zbl 0027.28505 · doi:10.1103/PhysRev.60.252
[50] Lawler, G.; Limic, V., The Beurling estimate for a class of random walks, Electron. J. Probab., 9, 846-861 (2004) · Zbl 1063.60066 · doi:10.1214/EJP.v9-228
[51] Lepowsky, J.; Li, H., Introduction to Vertex Operator Algebras and their Representations (2004), Boston: Birkhäuser, Boston · Zbl 1055.17001 · doi:10.1007/978-0-8176-8186-9
[52] McCoy, BM; Wu, TT, The Two-Dimensional Ising Model (1973), Cambridge: Harvard University Press, Cambridge · Zbl 1094.82500 · doi:10.4159/harvard.9780674180758
[53] Mercat, C., Discrete Riemann surfaces and the Ising model, Commun. Math. Phys., 218, 177-216 (2001) · Zbl 1043.82005 · doi:10.1007/s002200000348
[54] Montroll, EW; Potts, RB; Ward, JC, Correlations and spontaneous magnetization of the two-dimensional Ising model, J. Math. Phys., 4, 308-322 (1963) · doi:10.1063/1.1703955
[55] Mussardo, G., Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics (2009), Oxford: Oxford University Press, Oxford
[56] Onsager, L., Crystal statistics. I. A two-dimensional model with order-disorder transition, Phys. Rev., 65, 117-149 (1944) · Zbl 0060.46001 · doi:10.1103/PhysRev.65.117
[57] Palmer, J., Planar Ising Correlations (2007), Boston: Birkhäuser, Boston · Zbl 1136.82001
[58] Peltola, E., Wu, H.: Crossing probabilities of multiple Ising interfaces. https://arxiv.org/pdf/1808.09438 (2018)
[59] Perk, JHH, Quadratic identities for Ising model correlations, Phys. Lett., 79A, 3-5 (1980) · doi:10.1016/0375-9601(80)90299-6
[60] Radnell, D.; Schippers, E.; Staubach, W., Quasiconformal Teichmüller theory as an analytical foundation for two dimensional conformal field theory, Contemp. Math., 695, 205-238 (2017) · Zbl 1393.30034 · doi:10.1090/conm/695/14003
[61] Schultz, TD; Mattis, DC; Lieb, EH, Two-dimensional Ising model as a soluble problem of many fermions, Rev. Mod. Phys., 36, 856-871 (1964) · doi:10.1103/RevModPhys.36.856
[62] Segal, G., The definition of conformal field theory, Differ. Geom. Methods Theor. Phys., 250, 165-171 (1988) · Zbl 0657.53060 · doi:10.1007/978-94-015-7809-7_9
[63] Segal, G., The definition of conformal field theory, Topol. Geom. Quantum Field Theory, 308, 421-577 (2004) · Zbl 1372.81138
[64] Smirnov, S.: Towards conformal invariance of 2D lattice models. Proceedings of the international congress of mathematicians (ICM), Madrid, August 22-30, 2006. Vol. II: Invited lectures, pp. 1421-1451. Zürich: European Mathematical Society (EMS) (2006) · Zbl 1112.82014
[65] Smirnov, S., Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. Math., 172, 2, 1435-1467 (2010) · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1435
[66] Smirnov, S.: Discrete complex analysis and probability. Proceedings of the international congress of mathematicians (ICM), Hyderabad (2010)
[67] Stephen, M.; Mittag, L., A new representation of the solution of the Ising model, J. Math. Phys., 13, 1944-1951 (1972) · doi:10.1063/1.1665938
[68] Wu, TT, Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model I, Phys. Rev., 149, 380-401 (1966) · doi:10.1103/PhysRev.149.380
[69] Wu, TT; McCoy, BM; Tracy, CA; Barouch, E., Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region, Phys. Rev. B, 13, 316-374 (1976) · doi:10.1103/PhysRevB.13.316
[70] Yang, CN, The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev., 85, 808-816 (1952) · Zbl 0046.45304 · doi:10.1103/PhysRev.85.808
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.