×

Unified periodic boundary condition for homogenizing the thermo-mechanical properties of composites. (English) Zbl 1525.74172

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
74E30 Composite and mixture properties
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bui, V.-T.; Kim, S.-E., Nonlinear inelastic analysis of semi-rigid steel frames with circular concrete-filled steel tubular columns, Int. J. Mech. Sci., 196, 106273 (2021)
[2] Yademellat, H.; Nikbakht, A.; Saghafi, H.; Sadighi, M., Experimental and numerical investigation of low velocity impact on electrospun nanofiber modified composite laminates, Compos. Struct., 200, 507-514 (2018)
[3] Yu, P.; Duan, Y. H.; Chen, E.; Tang, S. W.; Wang, X. R., Microstructure-based fractal models for heat and mass transport properties of cement paste, Int. J. Heat Mass Transf., 126, 432-447 (2018)
[4] Tian, W.; Qi, L.; Su, C.; Zhou, J., Mean-field homogenization based approach to evaluate macroscopic coefficients of thermal expansion of composite materials, Int. J. Heat Mass Transf., 102, 1321-1333 (2016)
[5] Kim, Y.; Jung, J.; Lee, S.; Doghri, I.; Ryu, S., Adaptive affine homogenization method for visco-hyperelastic composites with imperfect interface, Appl. Math. Model., 107, 72-84 (2022) · Zbl 1503.74094
[6] Kaleel, I.; Petrolo, M.; Carrera, E.; Waas, A. M., Computationally efficient concurrent multiscale framework for the nonlinear analysis of composite structures, AIAA J., 57, 9, 4029-4041 (2019)
[7] Guo, W.; Han, F.; Jiang, J.; Xu, W., A micromechanical framework for thermo-elastic properties of multiphase cementitious composites with different saturation, Int. J. Mech. Sci., 224, 107313 (2022)
[8] Katouzian, M.; Vlase, S.; Marin, M.; Scutaru, M. L., Modeling study of the creep behavior of carbon-fiber-reinforced composites: a review, Polymers (Basel), 15, 1, 194 (2023)
[9] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci., 241, 1226, 376-396 (1957) · Zbl 0079.39606
[10] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 5, 571-574 (1973)
[11] Doghri, I.; Ouaar, A., Homogenization of two-phase elasto-plastic composite materials and structures: study of tangent operators, cyclic plasticity and numerical algorithms, Int. J. Solids Struct., 40, 1681-1712 (2003) · Zbl 1032.74624
[12] Pierard, O.; Friebel, C.; Doghri, I., Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation, Compos. Sci. Technol., 64, 1587-1603 (2004)
[13] Hori, M.; Nemat-Nasser, S., Double-inclusion model and overall moduli of multi-phase composites, Mech. Mater., 14, 3, 189-206 (1993)
[14] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804
[15] Mandel, J., Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique, Applied Mechanics, 502-509 (1966), Springer
[16] Gray, W. G.; Schrefler, B. A.; Pesavento, F., The solid phase stress tensor in porous media mechanics and the hill-Mandel condition, J. Mech. Phys. Solids, 57, 3, 539-554 (2009) · Zbl 1170.74324
[17] Dosta, M.; Bistreck, K.; Skorych, V.; Schneider, G. A., Mesh-free micromechanical modeling of inverse opal structures, Int. J. Mech. Sci., 204, 106577 (2021)
[18] Jacques, S.; De Baere, I.; Paepegem, W. V., Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites, Compos. Sci. Technol., 92, 41-54 (2014)
[19] Willot, F.c.; Jeulin, D., Elastic behavior of composites containing boolean random sets of inhomogeneities, Int. J. Eng. Sci., 47, 2, 313-324 (2009) · Zbl 1213.74250
[20] Wang, R.; Zhang, L.; Hu, D.; Liu, C.; Shen, X.; Cho, C.; Li, B., A novel approach to impose periodic boundary condition on braided composite RVE model based on RPIM, Compos. Struct., 163, 77-88 (2017)
[21] Hori, M.; Nemat-Nasser, S., On two micromechanics theories for determining micro-macro relations in heterogeneous solids, Mech. Mater., 31, 10, 667-682 (1999)
[22] Hazanov, S.; Huet, C., Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, J. Mech. Phys. Solids, 42, 12, 1995-2011 (1994) · Zbl 0821.73005
[23] Xia, Z.; Zhang, Y.; Ellyin, F., A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct., 40, 1907-1921 (2003) · Zbl 1048.74011
[24] Garoz, D.; Gilabert, F. A.; Sevenois, R. D.B.; Spronk, S. W.F.; Paepegem, W. V., Consistent application of periodic boundary conditions in implicit and explicit finite element simulations of damage in composites, Compos. Part B: Eng., 168, 254-266 (2019)
[25] Tian, W.; Qi, L.; Chao, X.; Liang, J.; Fu, M., Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures, Compos. Part B: Eng., 162, 1-10 (2019)
[26] Tian, W.; Chao, X.; Fu, M. W.; Qi, L.; Ju, L., New numerical algorithm for the periodic boundary condition for predicting the coefficients of thermal expansion of composites, Mech. Mater., 154, 103737 (2021)
[27] Brito-Santana, H.; Thiesen, J. L.M.; de Medeiros, R.; Ferreira, A. J.M.; Rodríguez-Ramos, R.; Tita, V., Multiscale analysis for predicting the constitutive tensor effective coefficients of layered composites with micro and macro failures, Appl. Math. Model., 75, 250-266 (2019) · Zbl 1481.74644
[28] Qi, L.; Chao, X.; Tian, W.; Ma, W.; Li, H., Numerical study of the effects of irregular pores on transverse mechanical properties of unidirectional composites, Compos. Sci. Technol., 159, 142-151 (2018)
[29] Khdir, Y. K.; Kanit, T.; Zaïri, F.; Naït-Abdelaziz, M., Computational homogenization of elastic-plastic composites, Int. J. Solids Struct., 50, 18, 2829-2835 (2013)
[30] Halpin, J. C., Stiffness and expansion estimates for oriented short fiber composites, J. Compos. Mater., 3, 4, 732-734 (1969)
[31] Halpin Affdl, J. C.; Kardos, J. L., The halpin-Tsai equations: a review, Polymer Eng. Sci., 16, 5, 344-352 (1976)
[32] Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches, Int. J. Solids Struct., 37, 16, 2285-2311 (2000) · Zbl 0991.74056
[33] Drugan, W. J.; Willis, J. R., A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, 44, 497-524 (1996) · Zbl 1054.74704
[34] Gusev, A. A., Representative volume element size for elastic composites: a numerical study, J. Mech. Phys. Solids, 45, 9, 1449-1459 (1997) · Zbl 0977.74512
[35] Gusev, A. A.; Hine, P. J.; Ward, I. M., Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite, Compos. Sci. Technol., 60, 4, 535-541 (2000)
[36] Duschlbauer, D.; Böhm, H. J.; Pettermann, H. E., Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches, J. Compos. Mater., 40, 24, 2217-2234 (2006)
[37] Zhang, Y.; Zhou, Z., Experimental and multiscale numerical investigation on failure behavior of satin woven carbon/carbon composites subjected to pin-loading, Int. J. Mech. Sci., 219, 107129 (2022)
[38] Chao, X.; Qi, L.; Cheng, J.; Tian, W.; Zhang, S.; Li, H., Numerical evaluation of the effect of pores on effective elastic properties of carbon/carbon composites, Compos. Struct., 196, 108-116 (2018)
[39] Ghazi, A.; Berke, P.; Kamel, K. E.M.; Sonon, B.; Tiago, C.; Massart, T. J., Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control, Int. J. Eng. Sci., 143, 92-114 (2019)
[40] Wan, Y.; Straumit, I.; Takahashi, J.; Lomov, S. V., Micro-CT analysis of the orientation unevenness in randomly chopped strand composites in relation to the strand length, Compos. Struct., 206, 865-875 (2018)
[41] Sun, Q.; Jain, M. K., Computational elastic analysis of AA7075-o using 3d-microstructrure-based-RVE with really-distributed particles, Int. J. Mech. Sci., 221, 107192 (2022)
[42] Grabowski, G., Modelling of thermal expansion of single- and two-phase ceramic polycrystals utilising synthetic 3D microstructures, Comput. Mater. Sci, 156, 7-16 (2019)
[43] Ghossein, E.; Lévesque, M., Random generation of periodic hard ellipsoids based on molecular dynamics: a computationally-efficient algorithm, J. Comput. Phys., 253, 471-490 (2013) · Zbl 1349.65081
[44] Ghossein, E.; Lévesque, M., A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites, Int. J. Solids Struct., 49, 11, 1387-1398 (2012)
[45] Bahmani, A.; Li, G.; Willett, T. L.; Montesano, J., Three-dimensional microscopic assessment of randomly distributed representative volume elements for high fiber volume fraction unidirectional composites, Compos. Struct., 192, 153-164 (2018)
[46] Schneider, M., The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics, Comput. Mech., 59, 2, 247-263 (2017)
[47] Mehta, A.; Schneider, M., A sequential addition and migration method for generating microstructures of short fibers with prescribed length distribution, Comput. Mech., 70, 1-23 (2022) · Zbl 1501.74071
[48] Tian, W.; Qi, L.; Chao, X., Minimum potential method appropriate to generate 2d RVEs of composites with high fiber volume fraction, Compos. Struct., 1, 1 (2023)
[49] Tian, W.; Chao, X.; Fu, M. W.; Qi, L., An algorithm for generation of RVEs of composites with high particle volume fractions, Compos. Sci. Technol., 207, 108714 (2021)
[50] Mercier, S.; Kowalczyk-Gajewska, K.; Czarnota, C., Effective behavior of composites with combined kinematic and isotropic hardening based on additive tangent mori-Tanaka scheme, Compos. Part B: Eng., 174, 107052 (2019)
[51] Segurado, J.; Llorca, J., A numerical approximation to the elastic properties of sphere-reinforced composites, J. Mech. Phys. Solids, 50, 10, 2107-2121 (2002) · Zbl 1151.74335
[52] Wippler, J.; Fünfschilling, S.; Fritzen, F.; Böhlke, T.; Hoffmann, M. J., Homogenization of the thermoelastic properties of silicon nitride, Acta Mater., 59, 6029-6038 (2011)
[53] Nguyen, V.-D.; Béchet, E.; Geuzaine, C.; Noels, L., Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation, Comput. Mater. Sci., 55, 390-406 (2012)
[54] Reis, F. J.P.; Andrade Pires, F. M., A mortar based approach for the enforcement of periodic boundary conditions on arbitrarily generated meshes, Comput. Methods Appl. Mech. Eng., 274, 168-191 (2014) · Zbl 1296.74092
[55] Akpoyomare, A. I.; Okereke, M. I.; Bingley, M. S., Virtual testing of composites: imposing periodic boundary conditions on general finite element meshes, Compos. Struct., 160, 983-994 (2017)
[56] Chawla, N.; Sidhu, R. S.; Ganesh, V. V., Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites, Acta Mater., 54, 6, 1541-1548 (2006)
[57] Wong, C. P.; Bollampally, R. S., Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging, J. Appl. Polym. Sci., 74, 14, 3396-3403 (1999)
[58] Lahellec, N.; Suquet, P., Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings, Int. J. Plast., 42, 1-30 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.