×

The effect of size on spin-to-charge conversion in the magnetic Weyl semimetal. (English) Zbl 1489.82072

Summary: A magnetic Weyl semimetal (MWSM), which only has a pair of Weyl nodes, is an ideal platform to study spin-related transport properties, such as the chiral anomaly and the magnetic chiral magnetic effect. This work investigates the sample size and impurity effects on the spin-to-charge conversion in a vertical heterostructure consisting of a ferromagnetic metal and a MWSM, where a spin bias is applied at the interface and a charge current is generated. We find that the two Weyl nodes with opposite chirality generate the same charge current in the \(y\), \(z\) directions as a result of the spin injection but opposite in the \(x\) direction. The analytic formulas of the conductance in the ballistic and diffusive limits are given. Furthermore, we discuss that the efficiency of spin-to-charge conversion increases and becomes perfect from the ballistic to the diffusive limit. These findings provide new potentials for manipulating the interconversion between spin and charge in the topological semimetals.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
82D80 Statistical mechanics of nanostructures and nanoparticles
Full Text: DOI

References:

[1] Hirohata, A.; Yamada, K.; Nakatani, Y., J. Magn. Magn. Mater., 509, Article 166711 pp. (2020)
[2] Bernevig, B. A.; Zhang, S. C., Phys. Rev. Lett., 96, 10, 106802 (2006)
[3] Saitoh, E.; Ueda, M.; Miyajima, H., Appl. Phys. Lett., 88, 18, 182509 (2006)
[4] Nakayama, H.; Ando, K.; Harii, K., Phys. Rev. B, 85, 14, Article 144408 pp. (2012)
[5] Shen, K.; Vignale, G.; Raimondi, R., Phys. Rev. Lett., 112, 9, 096601 (2014)
[6] Sangiao, S.; De Teresa, J. M.; Morellon, L., Appl. Phys. Lett., 106, 17, Article 172403 pp. (2015)
[7] Sánchez, J. C.R.; Vila, L.; Desfonds, G., Nat. Commun., 4, 1, 1-7 (2013)
[8] Mahfouzi, F.; Nagaosa, N.; Nikolić, B. K., Phys. Rev. B, 90, 11, 115432 (2014)
[9] Geng, H.; Luo, W.; Deng, W. Y., Sci. Rep., 7, 1, 1-7 (2017)
[10] Wang, X.; Cheng, L.; Zhu, D., Adv. Mater., 30, 52, 1802356 (2018)
[11] Lv, B. Q.; Weng, H. M.; Fu, B. B., Phys. Rev. X, 5, 3, 031013 (2015)
[12] Yang, L. X.; Liu, Z. K.; Sun, Y., Nat. Phys., 11, 9, 728-732 (2015)
[13] Zyuzin, A. A.; Burkov, A. A., Phys. Rev. B, 86, 11, 115133 (2012)
[14] Huang, X.; Zhao, L.; Long, Y., Phys. Rev. X, 5, 3, 031023 (2015)
[15] Parameswaran, S. A.; Grover, T.; Abanin, D. A., Phys. Rev. X, 4, 3, 031035 (2014)
[16] Deng, M. X.; Qi, G. Y.; Ma, R., Phys. Rev. Lett., 122, 3, 036601 (2019)
[17] Zhang, Y.; Yin, Y.; Dubuis, G., npj Quantum Mat., 6, 1, 1-8 (2021)
[18] Liu, C.; Yi, C. J.; Wang, X. Y., Sci. China, Phys. Mech. Astron., 64, 5, 1-9 (2021)
[19] Tang, K.; Wen, Z.; Lau, Y. C., Appl. Phys. Lett., 118, 6, Article 062402 pp. (2021)
[20] Johansson, A.; Henk, J.; Mertig, I., Phys. Rev. B, 97, 8, 085417 (2018)
[21] Zhao, B.; Khokhriakov, D.; Zhang, Y., Phys. Rev. Res., 2, 1, Article 013286 pp. (2020)
[22] Li, X.; Li, P.; Hou, V. D.H., Matter (2021)
[23] Zhang, S. S.L.; Burkov, A. A.; Martin, I., Spin-to-charge conversion in magnetic Weyl semimetals [J], Phys. Rev. Lett., 123, 18, Article 187201 pp. (2019)
[24] Geng, H.; Deng, W. Y.; Ren, Y. J., Chin. Phys. B, 25, 9, Article 097201 pp. (2016)
[25] Luo, W.; Deng, W. Y.; Geng, H., Phys. Rev. B, 93, 11, Article 115118 pp. (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.